Suppr超能文献

细菌糖基转移酶介导的细胞表面化学酶促聚糖修饰。

Bacterial glycosyltransferase-mediated cell-surface chemoenzymatic glycan modification.

机构信息

Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA.

Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.

出版信息

Nat Commun. 2019 Apr 17;10(1):1799. doi: 10.1038/s41467-019-09608-w.

Abstract

Chemoenzymatic modification of cell-surface glycan structures has emerged as a complementary approach to metabolic oligosaccharide engineering. Here, we identify Pasteurella multocida α2-3-sialyltransferase M144D mutant, Photobacterium damsela α2-6-sialyltransferase, and Helicobacter mustelae α1-2-fucosyltransferase, as efficient tools for live-cell glycan modification. Combining these enzymes with Helicobacter pylori α1-3-fucosyltransferase, we develop a host-cell-based assay to probe glycan-mediated influenza A virus (IAV) infection including wild-type and mutant strains of H1N1 and H3N2 subtypes. At high NeuAcα2-6-Gal levels, the IAV-induced host-cell death is positively correlated with haemagglutinin (HA) binding affinity to NeuAcα2-6-Gal. Remarkably, an increment of host-cell-surface sialyl Lewis X (sLe) exacerbates the killing by several wild-type IAV strains and a previously engineered mutant HK68-MTA. Structural alignment of HAs from HK68 and HK68-MTA suggests formation of a putative hydrogen bond between Trp222 of HA-HK68-MTA and the C-4 hydroxyl group of the α1-3-linked fucose of sLe, which may account for the enhanced host cell killing of that mutant.

摘要

细胞表面糖链结构的化学酶修饰已成为代谢性寡糖工程的一种补充方法。在这里,我们鉴定出多杀巴斯德氏菌α2-3-唾液酸转移酶 M144D 突变体、发光杆菌α2-6-唾液酸转移酶和鼬螺旋杆菌α1-2-岩藻糖基转移酶,它们是活细胞糖修饰的有效工具。将这些酶与幽门螺杆菌α1-3-岩藻糖基转移酶结合使用,我们开发了一种基于宿主细胞的测定法来研究糖介导的甲型流感病毒(IAV)感染,包括 H1N1 和 H3N2 亚型的野生型和突变株。在 NeuAcα2-6-Gal 水平较高的情况下,IAV 诱导的宿主细胞死亡与血凝素(HA)与 NeuAcα2-6-Gal 的结合亲和力呈正相关。值得注意的是,宿主细胞表面唾液酸化路易斯 X(sLe)的增加会加剧几种野生型 IAV 株和先前工程化的突变株 HK68-MTA 的杀伤作用。来自 HK68 和 HK68-MTA 的 HAs 的结构比对表明,HA-HK68-MTA 的色氨酸 222 与 sLe 的α1-3 连接岩藻糖的 C-4 羟基之间可能形成了一个氢键,这可能解释了该突变体增强的宿主细胞杀伤作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0bdf/6470217/6ba026758606/41467_2019_9608_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验