Gribling Sander, de Laat David, Laurent Monique
1CWI, Amsterdam, Netherlands.
2Tilburg University, Tilburg, Netherlands.
Math Program. 2018;170(1):5-42. doi: 10.1007/s10107-018-1287-z. Epub 2018 May 21.
In this paper we study optimization problems related to bipartite quantum correlations using techniques from tracial noncommutative polynomial optimization. First we consider the problem of finding the minimal entanglement dimension of such correlations. We construct a hierarchy of semidefinite programming lower bounds and show convergence to a new parameter: the minimal average entanglement dimension, which measures the amount of entanglement needed to reproduce a quantum correlation when access to shared randomness is free. Then we study optimization problems over synchronous quantum correlations arising from quantum graph parameters. We introduce semidefinite programming hierarchies and unify existing bounds on quantum chromatic and quantum stability numbers by placing them in the framework of tracial polynomial optimization.
在本文中,我们运用迹非交换多项式优化技术研究与二分量子关联相关的优化问题。首先,我们考虑寻找此类关联的最小纠缠维度的问题。我们构建了半定规划下界的层次结构,并证明其收敛到一个新参数:最小平均纠缠维度,该参数衡量在可自由访问共享随机性的情况下重现量子关联所需的纠缠量。然后,我们研究由量子图参数产生的同步量子关联上的优化问题。我们引入半定规划层次结构,并通过将它们置于迹多项式优化框架中来统一关于量子色数和量子稳定数的现有界。