Suppr超能文献

评估收获的微藻湿式储存以应对季节性变化的稳定性和技术经济影响。

Assessing the stability and techno-economic implications for wet storage of harvested microalgae to manage seasonal variability.

作者信息

Wendt Lynn M, Kinchin Christopher, Wahlen Bradley D, Davis Ryan, Dempster Thomas A, Gerken Henri

机构信息

1Biological and Chemical Processing Department, Idaho National Laboratory, P.O. Box 1625, Idaho Falls, ID 83415 USA.

2National Renewable Energy Laboratory, Golden, CO 80401 USA.

出版信息

Biotechnol Biofuels. 2019 Apr 8;12:80. doi: 10.1186/s13068-019-1420-0. eCollection 2019.

Abstract

BACKGROUND

Seasonal variation in microalgae production is a significant challenge to developing cost-competitive algae biofuels. Summer production can be three to five times greater than winter production, which could result in winter biomass shortages and summer surpluses at algae biorefineries. While the high water content (80%, wet basis) of harvested microalgae biomass makes drying an expensive approach to preservation, it is not an issue for ensiling. Ensiling relies on lactic acid fermentation to create anaerobic acidic conditions, which limits further microbial degradation. This study explores the feasibility of preserving microalgae biomass through wet anaerobic storage ensiling over 30 and 180 days of storage, and it presents a techno-economic analysis that considers potential cost implications.

RESULTS

Harvested biomass untreated (anaerobic) or supplemented with 0.5% sulfuric acid underwent robust lactic acid fermentation (lactic acid content of 6-9%, dry basis) lowering the pH to 4.2. Dry matter losses after 30 days ranged from 10.8 to 15.5% depending on the strain and treatment without additional loss over the next 150 days. Long-term storage of microalgae biomass resulted in lactic acid concentrations that remained high (6%, dry basis) with a low pH (4.2-4.6). Detailed biochemical composition revealed that protein and lipid content remained unaffected by storage while carbohydrate content was reduced, with greater dry matter loss associated with greater reduction in carbohydrate content, primarily affecting glucan content. Techno-economic analysis comparing wet storage to drying and dry storage demonstrated the cost savings of this approach. The most realistic dry storage scenario assumes a contact drum dryer and aboveground carbon steel storage vessels, which translates to a minimum fuel selling price (MFSP) of $3.72/gallon gasoline equivalent (GGE), whereas the most realistic wet storage scenario, which includes belowground, covered wet storage pits translates to an MFSP of $3.40/GGE.

CONCLUSIONS

Microalgae biomass can be effectively preserved through wet anaerobic storage, limiting dry matter loss to below 10% over 6 months with minimal degradation of carbohydrates and preservation of lipids and proteins. Techno-economic analysis indicates that wet storage can reduce overall biomass and fuel costs compared to drying and dry storage.

摘要

背景

微藻产量的季节性变化是开发具有成本竞争力的藻类生物燃料面临的重大挑战。夏季产量可能比冬季产量高3至5倍,这可能导致藻类生物精炼厂冬季生物质短缺而夏季过剩。虽然收获的微藻生物质含水量高(湿基80%)使得干燥成为一种昂贵的保存方法,但对于青贮来说这不是问题。青贮依靠乳酸发酵创造厌氧酸性条件,从而限制进一步的微生物降解。本研究探讨了通过湿厌氧储存青贮保存微藻生物质30天和180天的可行性,并进行了考虑潜在成本影响的技术经济分析。

结果

未经处理(厌氧)或添加0.5%硫酸的收获生物质进行了强劲的乳酸发酵(乳酸含量为6 - 9%,干基),将pH值降至4.2。30天后的干物质损失在10.8%至15.5%之间,具体取决于菌株和处理方式,在接下来的150天内没有额外损失。微藻生物质的长期储存导致乳酸浓度保持较高(6%,干基),pH值较低(4.2 - 4.6)。详细的生化组成分析表明,蛋白质和脂质含量不受储存影响,而碳水化合物含量降低,干物质损失越大,碳水化合物含量降低越多,主要影响葡聚糖含量。将湿储存与干燥和干储存进行比较的技术经济分析表明了这种方法的成本节约。最现实的干储存方案假设使用接触式滚筒干燥机和地上碳钢储存容器,这转化为每加仑汽油当量(GGE)的最低燃料销售价格(MFSP)为3.72美元,而最现实的湿储存方案,包括地下有盖湿储存坑,转化为MFSP为3.40美元/GGE。

结论

微藻生物质可以通过湿厌氧储存有效保存,在6个月内将干物质损失限制在10%以下,碳水化合物降解最小,脂质和蛋白质得以保存。技术经济分析表明,与干燥和干储存相比,湿储存可以降低总体生物质和燃料成本。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c1bb/6452513/29ace2f9615b/13068_2019_1420_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验