Dixit Vaibhav A
Department of Pharmacy , Birla Institute of Technology and Sciences Pilani (BITS Pilani) , Vidya Vihar Campus , Street number 41 , Pilani , 333031 , Rajasthan , India . Email:
Toxicol Res (Camb). 2018 Nov 29;8(2):157-171. doi: 10.1039/c8tx00261d. eCollection 2019 Mar 1.
Linear drug toxicity models like therapeutic index (TI), physicochemical rules (rule of five, 3/75), ligand efficiency indices (LEI), ideal pharmacokinetic (PK) and pharmacodynamic (PD) profiles are widely used in drug discovery and development. In spite of this, predicting drug toxicity at various stages remains challenging and the overall productivity (<20%) and ultimate benefit to the patients remain low. A simple drug toxicity model, "Drug Toxicity Index" (DTI), is developed here using 711 oral drugs. DTI redefines drug toxicity as scaled biphasic and exponential functions of PD, PK and physicochemical parameters. PD, PK and physicochemical toxicity contributions were estimated from the on and off target IC, maximum unbound plasma drug concentration (free ), and log values, respectively. These contributions are then scaled by molar dose and oral bioavailability and the logarithm of the sum of scaled contributions is DTI. Drugs with DTI above the WHO ATC drug category specific average values consistently have toxic profiles, while drugs with DTI below this average are relatively safe. DTI performs better than standard rules for lead optimization, LEI and exposure based TIs in identifying safe and toxic drugs. DTI classifies 392 drugs reported in the US-FDA's Liver Toxicity Knowledge Base (LTKB) with an AUC for ROC curves of 0.91-0.64 for different WHO ATC categories. DTI has been used to predict network meta-analysis results on relative toxicity within/across eight different therapeutic areas. It is useful in understanding PD, PK and physicochemical toxicity contributions and identifying potentially toxic drugs and the toxicity of recently approved drugs. Decision trees are proposed for applying the DTI concept in preclinical drug discovery and clinical trial settings. DTI can potentially reduce failure in drug discovery and might be useful in therapeutic drug monitoring and in xenobiotic and environmental toxicity studies.
诸如治疗指数(TI)、物理化学规则(五规则、3/75)、配体效率指数(LEI)、理想药代动力学(PK)和药效学(PD)概况等线性药物毒性模型在药物研发中被广泛应用。尽管如此,在各个阶段预测药物毒性仍然具有挑战性,总体生产率(<20%)以及给患者带来的最终益处仍然很低。在此,利用711种口服药物开发了一种简单的药物毒性模型——“药物毒性指数”(DTI)。DTI将药物毒性重新定义为PD、PK和物理化学参数的缩放双相指数函数。PD、PK和物理化学毒性贡献分别根据靶上和靶外IC、最大非结合血浆药物浓度(游离 )以及log 值进行估算。然后,这些贡献通过摩尔剂量和口服生物利用度进行缩放,缩放贡献之和的对数即为DTI。DTI高于世界卫生组织(WHO)解剖学治疗学化学分类(ATC)药物类别特定平均值的药物始终具有毒性特征,而DTI低于该平均值的药物相对安全。在识别安全和有毒药物方面,DTI在先导化合物优化、LEI和基于暴露的TI方面比标准规则表现更好。DTI对美国食品药品监督管理局(US-FDA)肝脏毒性知识库(LTKB)中报告的392种药物进行了分类,不同WHO ATC类别的ROC曲线AUC为0.91 - 0.64。DTI已被用于预测八个不同治疗领域内/跨领域相对毒性的网络荟萃分析结果。它有助于理解PD、PK和物理化学毒性贡献,识别潜在有毒药物以及近期批准药物的毒性。提出了在临床前药物发现和临床试验环境中应用DTI概念的决策树。DTI有可能减少药物研发中的失败,并且可能在治疗药物监测以及外源性物质和环境毒性研究中有用。