Kim Kun Joong, Han Hyeon, Defferriere Thomas, Yoon Daseob, Na Suenhyoeng, Kim Sun Jae, Dayaghi Amir Masoud, Son Junwoo, Oh Tae-Sik, Jang Hyun Myung, Choi Gyeong Man
Department of Materials Science & Engineering/Fuel Cell Research Center , Pohang University of Science and Technology (POSTECH) , Pohang 37673 , Republic of Korea.
Department of Materials Science and Engineering , Massachusetts Institute of Technology , Cambridge , Massachusetts 02139 , United States.
J Am Chem Soc. 2019 May 8;141(18):7509-7517. doi: 10.1021/jacs.9b02283. Epub 2019 Apr 24.
Nucleation of nanoparticles using the exsolution phenomenon is a promising pathway to design durable and active materials for catalysis and renewable energy. Here, we focus on the impact of surface orientation of the host lattice on the nucleation dynamics to resolve questions with regards to "preferential nucleation sites". For this, we carried out a systematic model study on three differently oriented perovskite thin films. Remarkably, in contrast to the previous bulk powder-based study suggesting that the (110)-surface is a preferred plane for exsolution, we identify that other planes such as (001)- and (111)-facets also reveal vigorous exsolution. Moreover, particle size and surface coverage vary significantly depending on the surface orientation. Exsolution of (111)-oriented film produces the largest number of particles, the smallest particle size, the deepest embedment, and the smallest and most uniform interparticle distance among the oriented films. Based on classic nucleation theory, we elucidate that the differences in interfacial energies as a function of substrate orientation play a crucial role in controlling the distinct morphology and nucleation behavior of exsolved nanoparticles. Our finding suggests new design principles for tunable solid-state catalyst or nanoscale metal decoration.
利用脱溶现象使纳米颗粒成核是设计用于催化和可再生能源的耐用且活性材料的一条有前景的途径。在此,我们聚焦于主体晶格的表面取向对成核动力学的影响,以解决关于“优先成核位点”的问题。为此,我们对三种不同取向的钙钛矿薄膜进行了系统的模型研究。值得注意的是,与之前基于块状粉末的研究表明(110)面是脱溶的优选平面不同,我们发现其他平面如(001)面和(111)面也显示出剧烈的脱溶现象。此外,颗粒尺寸和表面覆盖率会因表面取向而显著变化。在取向薄膜中,(111)取向薄膜的脱溶产生的颗粒数量最多、颗粒尺寸最小、嵌入最深,且颗粒间距离最小且最均匀。基于经典成核理论,我们阐明了界面能随基底取向的差异在控制脱溶纳米颗粒的独特形态和成核行为中起着关键作用。我们的发现为可调谐固态催化剂或纳米级金属修饰提出了新的设计原则。