Suppr超能文献

脑电传感器网络的小型化效应分析及通道选择策略及其在听觉注意检测中的应用。

Analysis of Miniaturization Effects and Channel Selection Strategies for EEG Sensor Networks With Application to Auditory Attention Detection.

出版信息

IEEE Trans Biomed Eng. 2020 Jan;67(1):234-244. doi: 10.1109/TBME.2019.2911728. Epub 2019 Apr 17.

Abstract

OBJECTIVE

Concealable, miniaturized electroencephalography (mini-EEG) recording devices are crucial enablers toward long-term ambulatory EEG monitoring. However, the resulting miniaturization limits the inter-electrode distance and the scalp area that can be covered by a single device. The concept of wireless EEG sensor networks (WESNs) attempts to overcome this limitation by placing a multitude of these mini-EEG devices at various scalp locations. We investigate whether optimizing the WESN topology can compensate for miniaturization effects in an auditory attention detection (AAD) paradigm.

METHODS

Starting from standard full-cap high-density EEG data, we emulate several candidate mini-EEG sensor nodes that locally collect EEG data with embedded electrodes separated by short distances. We propose a greedy group-utility based channel selection strategy to select a subset of these candidate nodes to form a WESN. We compare the AAD performance of this WESN with the performance obtained using long-distance EEG recordings.

RESULTS

The AAD performance using short-distance EEG measurements is comparable to using an equal number of long-distance EEG measurements if, in both cases, the optimal electrode positions are selected. A significant increase in performance was found when using nodes with three electrodes over nodes with two electrodes.

CONCLUSION

When the nodes are optimally placed, WESNs do not significantly suffer from EEG miniaturization effects in the case of AAD.

SIGNIFICANCE

WESN-like platforms allow us to achieve similar AAD performance as with long-distance EEG recordings while adhering to the stringent miniaturization constraints for ambulatory EEG. Their applicability in an AAD task is important for the design of neuro-steered auditory prostheses.

摘要

目的

可隐藏的、小型化的脑电图(mini-EEG)记录设备是实现长期动态脑电图监测的关键。然而,这种小型化限制了电极之间的距离和单个设备可以覆盖的头皮区域。无线脑电图传感器网络(WESN)的概念试图通过在多个头皮位置放置多个这些 mini-EEG 设备来克服这一限制。我们研究了优化 WESN 拓扑结构是否可以弥补听觉注意检测(AAD)范式中的小型化效应。

方法

从标准的全帽高密度脑电图数据开始,我们模拟了几个候选的 mini-EEG 传感器节点,这些节点通过短距离的嵌入式电极局部采集脑电图数据。我们提出了一种基于贪婪分组效用的信道选择策略,以从这些候选节点中选择一个子集来形成 WESN。我们比较了该 WESN 在 AAD 中的性能与使用远距离 EEG 记录获得的性能。

结果

如果在两种情况下都选择最佳电极位置,那么使用短距离 EEG 测量的 AAD 性能与使用同等数量的远距离 EEG 测量的性能相当。使用具有三个电极的节点比使用两个电极的节点时,性能显著提高。

结论

当节点被优化放置时,在 AAD 的情况下,WESN 不会受到 EEG 小型化的显著影响。

意义

WESN 类平台允许我们在遵守动态脑电图严格小型化限制的情况下,实现与远距离 EEG 记录相似的 AAD 性能。它们在 AAD 任务中的适用性对于神经引导的听觉假体的设计非常重要。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验