Suppr超能文献

基于自适应跨主体迁移学习的运动想象脑电信号分类

Classification of motor imagery electroencephalogram signals by using adaptive cross-subject transfer learning.

作者信息

Feng Jin, Li Yunde, Jiang Chengliang, Liu Yu, Li Mingxin, Hu Qinghui

机构信息

Department of Student Affairs, Guilin Normal College, Guilin, Guangxi, China.

School of Electronic Information and Automation, Guilin University of Aerospace Technology, Guilin, Guangxi, China.

出版信息

Front Hum Neurosci. 2022 Dec 21;16:1068165. doi: 10.3389/fnhum.2022.1068165. eCollection 2022.

Abstract

INTRODUCTION

Electroencephalogram (EEG)-based motor imagery (MI) classification is an important aspect in brain-computer interfaces (BCIs), which bridges between neural system and computer devices decoding brain signals into recognizable machine commands. However, due to the small number of training samples of MI electroencephalogram (MI-EEG) for a single subject and the great individual differences of MI-EEG among different subjects, the generalization and accuracy of the model on the specific MI task may be poor.

METHODS

To solve these problems, an adaptive cross-subject transfer learning algorithm is proposed, which is based on kernel mean matching (KMM) and transfer learning adaptive boosting (TrAdaBoost) method. First, the common spatial pattern (CSP) is used to extract the spatial features. Then, in order to make the feature distribution more similar among different subjects, the KMM algorithm is used to compute a sample weight matrix for aligning the mean between source and target domains and reducing distribution differences among different subjects. Finally, the sample weight matrix from KMM is used as the initialization weight of TrAdaBoost, and then TrAdaBoost is used to adaptively select source domain samples that are closer to the target task distribution to assist in building a classification model.

RESULTS

In order to verify the effectiveness and feasibility of the proposed method, the algorithm is applied to BCI Competition IV datasets and in-house datasets. The results show that the average classification accuracy of the proposed method on the public datasets is 89.1%, and the average classification accuracy on the in-house datasets is 80.4%.

DISCUSSION

Compared with the existing methods, the proposed method effectively improves the classification accuracy of MI-EEG signals. At the same time, this paper also applies the proposed algorithm to the in-house dataset, the results verify the effectiveness of the algorithm again, and the results of this study have certain clinical guiding significance for brain rehabilitation.

摘要

引言

基于脑电图(EEG)的运动想象(MI)分类是脑机接口(BCI)中的一个重要方面,它架起了神经系统与计算机设备之间的桥梁,将脑信号解码为可识别的机器指令。然而,由于单个受试者的MI脑电图(MI-EEG)训练样本数量较少,且不同受试者之间的MI-EEG存在很大个体差异,模型在特定MI任务上的泛化能力和准确性可能较差。

方法

为了解决这些问题,提出了一种基于核均值匹配(KMM)和迁移学习自适应增强(TrAdaBoost)方法的自适应跨受试者迁移学习算法。首先,使用共同空间模式(CSP)提取空间特征。然后,为了使不同受试者之间的特征分布更相似,使用KMM算法计算一个样本权重矩阵,用于对齐源域和目标域之间的均值并减少不同受试者之间的分布差异。最后,将来自KMM的样本权重矩阵用作TrAdaBoost的初始化权重,然后使用TrAdaBoost自适应选择更接近目标任务分布的源域样本,以协助构建分类模型。

结果

为了验证所提方法的有效性和可行性,将该算法应用于BCI竞赛IV数据集和内部数据集。结果表明,所提方法在公共数据集上的平均分类准确率为89.1%,在内部数据集上的平均分类准确率为80.4%。

讨论

与现有方法相比,所提方法有效提高了MI-EEG信号的分类准确率。同时,本文还将所提算法应用于内部数据集,结果再次验证了算法的有效性,本研究结果对脑康复具有一定的临床指导意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fef5/9811670/d8bd0d84fda2/fnhum-16-1068165-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验