Suppr超能文献

基于刺激的空间滤波在高密度 EEG 中用于单试次神经响应和时间响应函数的估计及其在听觉研究中的应用

Stimulus-aware spatial filtering for single-trial neural response and temporal response function estimation in high-density EEG with applications in auditory research.

机构信息

Dept. Electrical Engineering (ESAT), Stadius Center for Dynamical Systems, Signal Processing and Data Analytics, KU Leuven, Kasteelpark Arenberg 10, B-3001, Leuven, Belgium; Dept. Neurosciences, ExpORL, KU Leuven, Herestraat 49 Bus 721, B-3000, Leuven, Belgium.

Dept. Neurosciences, ExpORL, KU Leuven, Herestraat 49 Bus 721, B-3000, Leuven, Belgium.

出版信息

Neuroimage. 2020 Jan 1;204:116211. doi: 10.1016/j.neuroimage.2019.116211. Epub 2019 Sep 20.

Abstract

A common problem in neural recordings is the low signal-to-noise ratio (SNR), particularly when using non-invasive techniques like magneto- or electroencephalography (M/EEG). To address this problem, experimental designs often include repeated trials, which are then averaged to improve the SNR or to infer statistics that can be used in the design of a denoising spatial filter. However, collecting enough repeated trials is often impractical and even impossible in some paradigms, while analyses on existing data sets may be hampered when these do not contain such repeated trials. Therefore, we present a data-driven method that takes advantage of the knowledge of the presented stimulus, to achieve a joint noise reduction and dimensionality reduction without the need for repeated trials. The method first estimates the stimulus-driven neural response using the given stimulus, which is then used to find a set of spatial filters that maximize the SNR based on a generalized eigenvalue decomposition. As the method is fully data-driven, the dimensionality reduction enables researchers to perform their analyses without having to rely on their knowledge of brain regions of interest, which increases accuracy and reduces the human factor in the results. In the context of neural tracking of a speech stimulus using EEG, our method resulted in more accurate short-term temporal response function (TRF) estimates, higher correlations between predicted and actual neural responses, and higher attention decoding accuracies compared to existing TRF-based decoding methods. We also provide an extensive discussion on the central role played by the generalized eigenvalue decomposition in various denoising methods in the literature, and address the conceptual similarities and differences with our proposed method.

摘要

神经记录中的一个常见问题是信噪比 (SNR) 低,特别是在使用非侵入性技术(如脑磁或脑电图 (M/EEG))时。为了解决这个问题,实验设计通常包括重复试验,然后对这些试验进行平均以提高 SNR 或推断可用于去噪空间滤波器设计的统计数据。然而,收集足够多的重复试验在某些范式中通常是不切实际的,甚至是不可能的,而当现有数据集不包含此类重复试验时,对这些数据集的分析可能会受到阻碍。因此,我们提出了一种数据驱动的方法,该方法利用呈现刺激的知识,在不需要重复试验的情况下实现联合降噪和降维。该方法首先使用给定的刺激来估计刺激驱动的神经响应,然后使用该响应找到一组基于广义特征值分解的空间滤波器,以最大化 SNR。由于该方法完全是数据驱动的,因此降维使研究人员无需依赖其对感兴趣脑区的知识来进行分析,从而提高了准确性并减少了结果中的人为因素。在使用 EEG 对语音刺激进行神经跟踪的背景下,与现有的基于 TRF 的解码方法相比,我们的方法导致更准确的短期时间响应函数 (TRF) 估计、预测和实际神经响应之间更高的相关性以及更高的注意力解码精度。我们还广泛讨论了广义特征值分解在文献中各种去噪方法中的核心作用,并讨论了与我们提出的方法的概念相似性和差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验