Suppr超能文献

XGBoost 模型用于慢性肾脏病诊断。

XGBoost Model for Chronic Kidney Disease Diagnosis.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2020 Nov-Dec;17(6):2131-2140. doi: 10.1109/TCBB.2019.2911071. Epub 2020 Dec 8.

Abstract

Chronic Kidney Disease (CKD) is a menace that is affecting 10 percent of the world population and 15 percent of the South African population. The early and cheap diagnosis of this disease with accuracy and reliability will save 20,000 lives in South Africa per year. Scientists are developing smart solutions with Artificial Intelligence (AI). In this paper, several typical and recent AI algorithms are studied in the context of CKD and the extreme gradient boosting (XGBoost) is chosen as our base model for its high performance. Then, the model is optimized and the optimal full model trained on all the features achieves a testing accuracy, sensitivity, and specificity of 1.000, 1.000, and 1.000, respectively. Note that, to cover the widest range of people, the time and monetary costs of CKD diagnosis have to be minimized with fewest patient tests. Thus, the reduced model using fewer features is desirable while it should still maintain high performance. To this end, the set-theory based rule is presented which combines a few feature selection methods with their collective strengths. The reduced model using about a half of the original full features performs better than the models based on individual feature selection methods and achieves accuracy, sensitivity and specificity, of 1.000, 1.000, and 1.000, respectively.

摘要

慢性肾脏病(CKD)是一种威胁,影响着全球 10%的人口和南非 15%的人口。通过准确性和可靠性对这种疾病进行早期且廉价的诊断,每年可在南非挽救 2 万人的生命。科学家们正在利用人工智能(AI)开发智能解决方案。在本文中,研究了几种典型且最新的 AI 算法在 CKD 背景下的应用,选择极端梯度提升(XGBoost)作为我们的基础模型,因为它具有出色的性能。然后,对模型进行了优化,在所有特征上训练的最优全模型在测试时达到了 1.000 的准确率、灵敏度和特异性。值得注意的是,为了覆盖最广泛的人群,必须将 CKD 诊断的时间和金钱成本降到最低,同时减少患者的检查次数。因此,需要使用较少特征的简化模型,同时还应保持高性能。为此,提出了基于集合论的规则,该规则结合了几种特征选择方法及其集体优势。使用约一半原始全特征的简化模型比基于单个特征选择方法的模型表现更好,准确率、灵敏度和特异性分别达到了 1.000、1.000 和 1.000。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验