Department of Preventive Medicine, Korea University College of Medicine, Seoul, Korea.
Urological Biomedicine Research Institute, Soonchunhyang University Hospital, Seoul, Korea.
Epidemiol Health. 2019;41:e2019013. doi: 10.4178/epih.e2019013. Epub 2019 Apr 8.
The objective of this study is to describe the general approaches to network meta-analysis that are available for quantitative data synthesis using R software. We conducted a network meta-analysis using two approaches: Bayesian and frequentist methods. The corresponding R packages were "gemtc" for the Bayesian approach and "netmeta" for the frequentist approach. In estimating a network meta-analysis model using a Bayesian framework, the "rjags" package is a common tool. "rjags" implements Markov chain Monte Carlo simulation with a graphical output. The estimated overall effect sizes, test for heterogeneity, moderator effects, and publication bias were reported using R software. The authors focus on two flexible models, Bayesian and frequentist, to determine overall effect sizes in network meta-analysis. This study focused on the practical methods of network meta-analysis rather than theoretical concepts, making the material easy to understand for Korean researchers who did not major in statistics. The authors hope that this study will help many Korean researchers to perform network meta-analyses and conduct related research more easily with R software.
本研究的目的是描述使用 R 软件进行定量数据分析的网络荟萃分析的一般方法。我们采用了两种方法进行网络荟萃分析:贝叶斯方法和频率派方法。相应的 R 包分别是“gemtc”(用于贝叶斯方法)和“netmeta”(用于频率派方法)。在使用贝叶斯框架进行网络荟萃分析模型估计时,“rjags”包是一个常用的工具。“rjags”实现了具有图形输出的马尔可夫链蒙特卡罗模拟。使用 R 软件报告了估计的总体效应大小、异质性检验、调节效应和发表偏倚。作者关注了两种灵活的模型,即贝叶斯和频率派,以确定网络荟萃分析中的总体效应大小。本研究侧重于网络荟萃分析的实际方法,而不是理论概念,这使得非统计学专业的韩国研究人员更容易理解材料。作者希望本研究能够帮助许多韩国研究人员更轻松地使用 R 软件进行网络荟萃分析和开展相关研究。