Lombardi Charlotte, Tolchard James, Bouillot Stephanie, Signor Luca, Gebus Caroline, Liebl David, Fenel Daphna, Teulon Jean-Marie, Brock Juliane, Habenstein Birgit, Pellequer Jean-Luc, Faudry Eric, Loquet Antoine, Attrée Ina, Dessen Andréa, Job Viviana
Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
Institute of Chemistry and Biology of Membranes and Nanoobjects, Institut Européen de Chimie et Biologie (CBMN), UMR5248 CNRS, University of Bordeaux, Pessac, France.
Front Microbiol. 2019 Mar 29;10:573. doi: 10.3389/fmicb.2019.00573. eCollection 2019.
The type three secretion system (T3SS) is a macromolecular protein nano-syringe used by different bacterial pathogens to inject effectors into host cells. The extracellular part of the syringe is a needle-like filament formed by the polymerization of a 9-kDa protein whose structure and proper localization on the bacterial surface are key determinants for efficient toxin injection. Here, we combined , , and approaches to characterize the T3SS needle and its major component PscF. Using a combination of mutagenesis, phenotypic analyses, immunofluorescence, proteolysis, mass spectrometry, atomic force microscopy, electron microscopy, and molecular modeling, we propose a model of the needle that exposes the N-terminal region of each PscF monomer toward the outside of the filament, while the core of the fiber is formed by the C-terminal helix. Among mutations introduced into the needle protein PscF, D76A, and P47A/Q54A caused a defect in the assembly of the needle on the bacterial surface, although the double mutant was still cytotoxic on macrophages in a T3SS-dependent manner and formed filamentous structures in . These results suggest that the T3SS needle of displays an architecture that is similar to that of other bacterial needles studied to date and highlight the fact that small, targeted perturbations in needle assembly can inhibit T3SS function. Therefore, the T3SS needle represents an excellent drug target for small molecules acting as virulence blockers that could disrupt pathogenesis of a broad range of bacteria.
三型分泌系统(T3SS)是一种大分子蛋白质纳米注射器,不同的细菌病原体利用它将效应蛋白注入宿主细胞。注射器的细胞外部分是由一种9 kDa蛋白质聚合形成的针状细丝,其结构和在细菌表面的正确定位是有效注射毒素的关键决定因素。在这里,我们结合了[具体方法1]、[具体方法2]和[具体方法3]来表征[细菌名称]的T3SS针及其主要成分PscF。通过诱变、表型分析、免疫荧光、蛋白水解、质谱、原子力显微镜、电子显微镜和分子建模相结合的方法,我们提出了一个[细菌名称]针的模型,该模型显示每个PscF单体的N端区域朝向细丝外部,而纤维的核心由C端螺旋形成。在引入针蛋白PscF的突变中,D76A以及P47A/Q54A导致针在细菌表面组装出现缺陷,尽管双突变体在巨噬细胞中仍以T3SS依赖的方式具有细胞毒性,并在[具体环境]中形成丝状结构。这些结果表明,[细菌名称]的T3SS针呈现出与迄今研究的其他细菌针相似的结构,并突出了针组装中微小的靶向扰动可抑制T3SS功能这一事实。因此,T3SS针代表了一种极好的药物靶点,可用于小分子作为毒力阻断剂来破坏多种细菌的发病机制。