Suppr超能文献

基于改进的局部图像拟合模型和形状先验信息的自动视盘分割。

Automatic Optic Disc Segmentation Based on Modified Local Image Fitting Model with Shape Prior Information.

机构信息

College of Information Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.

Faculty of Robot Science and Engineering, Northeastern University, Shenyang, Liaoning 110819, China.

出版信息

J Healthc Eng. 2019 Mar 14;2019:2745183. doi: 10.1155/2019/2745183. eCollection 2019.

Abstract

Accurate optic disc (OD) detection is an essential yet vital step for retinal disease diagnosis. In the paper, an approach for segmenting OD boundary without manpower named full-automatic double boundary extraction is designed. There are two main advantages in it. (1) Since the performances and the computational cost produced by iterations of contour evolution of active contour models- (ACM-) based approaches greatly depend on the initialization, this paper proposes an effective and adaptive initial level set contour extraction approach using saliency detection and threshold techniques. (2) In order to handle unreliable information generated by intensity in abnormal retinal images caused by diseases, a modified LIF approach is presented by incorporating the shape prior information into LIF. We test the effectiveness of the proposed approach on a publicly available DIARETDB0 database. Experimental results demonstrate that our approach outperforms well-known approaches in terms of the average overlapping ratio and accuracy rate.

摘要

准确的视盘(OD)检测是视网膜疾病诊断的重要步骤。本文提出了一种无需人工干预的全自动双边界提取方法来分割 OD 边界。它有两个主要优点。(1)由于主动轮廓模型(ACM)的轮廓演化迭代的性能和计算成本极大地取决于初始化,本文提出了一种基于显著度检测和阈值技术的有效和自适应初始水平集轮廓提取方法。(2)为了处理由疾病引起的异常视网膜图像中强度产生的不可靠信息,本文通过将形状先验信息纳入 LIF 提出了一种改进的 LIF 方法。我们在一个公开的 DIARETDB0 数据库上测试了所提出方法的有效性。实验结果表明,我们的方法在平均重叠率和准确率方面优于知名方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/709b/6437741/485ef1f2b9f0/JHE2019-2745183.001.jpg

相似文献

1
Automatic Optic Disc Segmentation Based on Modified Local Image Fitting Model with Shape Prior Information.
J Healthc Eng. 2019 Mar 14;2019:2745183. doi: 10.1155/2019/2745183. eCollection 2019.
2
PCA-based localization approach for segmentation of optic disc.
Int J Comput Assist Radiol Surg. 2017 Dec;12(12):2195-2204. doi: 10.1007/s11548-017-1670-x. Epub 2017 Sep 30.
3
Automatic optic disc localization and segmentation in retinal images by a line operator and level sets.
Technol Health Care. 2016 Apr 29;24 Suppl 2:S767-76. doi: 10.3233/THC-161206.
4
A novel method for retinal optic disc detection using bat meta-heuristic algorithm.
Med Biol Eng Comput. 2018 Nov;56(11):2015-2024. doi: 10.1007/s11517-018-1840-1. Epub 2018 May 9.
5
An approach to locate optic disc in retinal images with pathological changes.
Comput Med Imaging Graph. 2016 Jan;47:40-50. doi: 10.1016/j.compmedimag.2015.10.003. Epub 2015 Nov 14.
6
Automatic Detection of Optic Disc in Retinal Image by Using Keypoint Detection, Texture Analysis, and Visual Dictionary Techniques.
Comput Math Methods Med. 2016;2016:6814791. doi: 10.1155/2016/6814791. Epub 2016 Mar 27.
7
Optic disc detection and boundary extraction in retinal images.
Appl Opt. 2015 Apr 10;54(11):3440-7. doi: 10.1364/AO.54.003440.
8
Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
IEEE J Biomed Health Inform. 2016 Nov;20(6):1562-1574. doi: 10.1109/JBHI.2015.2473159. Epub 2015 Aug 26.
9
Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets.
IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):644-57. doi: 10.1109/TITB.2012.2198668. Epub 2012 May 10.
10
A location-to-segmentation strategy for automatic exudate segmentation in colour retinal fundus images.
Comput Med Imaging Graph. 2017 Jan;55:78-86. doi: 10.1016/j.compmedimag.2016.09.001. Epub 2016 Sep 15.

引用本文的文献

1
Superpixel-Based Optic Nerve Head Segmentation Method of Fundus Images for Glaucoma Assessment.
Diagnostics (Basel). 2022 Dec 17;12(12):3210. doi: 10.3390/diagnostics12123210.
2
Optic Disc and Cup Segmentation in Retinal Images for Glaucoma Diagnosis by Locally Statistical Active Contour Model with Structure Prior.
Comput Math Methods Med. 2019 Nov 20;2019:8973287. doi: 10.1155/2019/8973287. eCollection 2019.

本文引用的文献

1
Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.
IEEE J Biomed Health Inform. 2016 Nov;20(6):1562-1574. doi: 10.1109/JBHI.2015.2473159. Epub 2015 Aug 26.
2
A Level Set Approach to Image Segmentation With Intensity Inhomogeneity.
IEEE Trans Cybern. 2016 Feb;46(2):546-57. doi: 10.1109/TCYB.2015.2409119. Epub 2015 Mar 12.
3
Optic disc segmentation using the sliding band filter.
Comput Biol Med. 2015 Jan;56:1-12. doi: 10.1016/j.compbiomed.2014.10.009. Epub 2014 Oct 30.
4
Robust multi-scale superpixel classification for optic cup localization.
Comput Med Imaging Graph. 2015 Mar;40:182-93. doi: 10.1016/j.compmedimag.2014.10.002. Epub 2014 Oct 13.
5
Superpixel classification based optic disc and optic cup segmentation for glaucoma screening.
IEEE Trans Med Imaging. 2013 Jun;32(6):1019-32. doi: 10.1109/TMI.2013.2247770. Epub 2013 Feb 18.
6
Automatic detection of optic disc based on PCA and mathematical morphology.
IEEE Trans Med Imaging. 2013 Apr;32(4):786-96. doi: 10.1109/TMI.2013.2238244. Epub 2013 Jan 9.
7
Fast localization and segmentation of optic disk in retinal images using directional matched filtering and level sets.
IEEE Trans Inf Technol Biomed. 2012 Jul;16(4):644-57. doi: 10.1109/TITB.2012.2198668. Epub 2012 May 10.
8
A level set method for image segmentation in the presence of intensity inhomogeneities with application to MRI.
IEEE Trans Image Process. 2011 Jul;20(7):2007-16. doi: 10.1109/TIP.2011.2146190. Epub 2011 Apr 21.
9
Detecting the optic disc boundary in digital fundus images using morphological, edge detection, and feature extraction techniques.
IEEE Trans Med Imaging. 2010 Nov;29(11):1860-9. doi: 10.1109/TMI.2010.2053042. Epub 2010 Jun 17.
10
Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation.
Comput Med Imaging Graph. 2009 Oct;33(7):520-31. doi: 10.1016/j.compmedimag.2009.04.010. Epub 2009 May 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验