Suppr超能文献

眼底图像的视盘边界和血管起源分割

Optic Disc Boundary and Vessel Origin Segmentation of Fundus Images.

作者信息

Roychowdhury Sohini, Koozekanani Dara D, Kuchinka Sam N, Parhi Keshab K

出版信息

IEEE J Biomed Health Inform. 2016 Nov;20(6):1562-1574. doi: 10.1109/JBHI.2015.2473159. Epub 2015 Aug 26.

Abstract

This paper presents a novel classification-based optic disc (OD) segmentation algorithm that detects the OD boundary and the location of vessel origin (VO) pixel. First, the green plane of each fundus image is resized and morphologically reconstructed using a circular structuring element. Bright regions are then extracted from the morphologically reconstructed image that lie in close vicinity of the major blood vessels. Next, the bright regions are classified as bright probable OD regions and non-OD regions using six region-based features and a Gaussian mixture model classifier. The classified bright probable OD region with maximum Vessel-Sum and Solidity is detected as the best candidate region for the OD. Other bright probable OD regions within 1-disc diameter from the centroid of the best candidate OD region are then detected as remaining candidate regions for the OD. A convex hull containing all the candidate OD regions is then estimated, and a best-fit ellipse across the convex hull becomes the segmented OD boundary. Finally, the centroid of major blood vessels within the segmented OD boundary is detected as the VO pixel location. The proposed algorithm has low computation time complexity and it is robust to variations in image illumination, imaging angles, and retinal abnormalities. This algorithm achieves 98.8%-100% OD segmentation success and OD segmentation overlap score in the range of 72%-84% on images from the six public datasets of DRIVE, DIARETDB1, DIARETDB0, CHASE_DB1, MESSIDOR, and STARE in less than 2.14 s per image. Thus, the proposed algorithm can be used for automated detection of retinal pathologies, such as glaucoma, diabetic retinopathy, and maculopathy.

摘要

本文提出了一种基于分类的新型视盘(OD)分割算法,该算法可检测视盘边界和血管起源(VO)像素的位置。首先,使用圆形结构元素对视盘图像的绿色平面进行调整大小和形态重建。然后从形态重建图像中提取位于主要血管附近的明亮区域。接下来,使用六个基于区域的特征和高斯混合模型分类器将明亮区域分类为明亮的可能视盘区域和非视盘区域。具有最大血管总和和紧实度的分类明亮可能视盘区域被检测为视盘的最佳候选区域。然后将距离最佳候选视盘区域质心1个视盘直径范围内的其他明亮可能视盘区域检测为视盘的其余候选区域。接着估计包含所有候选视盘区域的凸包,并且横跨凸包的最佳拟合椭圆成为分割后的视盘边界。最后,将分割后的视盘边界内主要血管的质心检测为VO像素位置。所提出的算法具有较低的计算时间复杂度,并且对图像照明、成像角度和视网膜异常的变化具有鲁棒性。该算法在DRIVE、DIARETDB1、DIARETDB0、CHASE_DB1、MESSIDOR和STARE这六个公共数据集的图像上,视盘分割成功率达到98.8% - 100%,视盘分割重叠分数在72% - 84%范围内,每张图像的处理时间不到2.14秒。因此,所提出的算法可用于自动检测视网膜病变,如青光眼、糖尿病性视网膜病变和黄斑病变。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验