Krämer Andreas, Pickard Frank C, Huang Jing, Venable Richard M, Simmonett Andrew C, Reith Dirk, Kirschner Karl N, Pastor Richard W, Brooks Bernard R
Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States.
Institute of Technology, Resource and Energy-Efficient Engineering , Bonn-Rhein-Sieg University of Applied Sciences , Grantham-Allee 20 , 53757 Sankt Augustin , Germany.
J Chem Theory Comput. 2019 Jun 11;15(6):3854-3867. doi: 10.1021/acs.jctc.9b00016. Epub 2019 May 9.
Atomistic biomolecular simulations predominantly utilize additive force fields (FF), where the electrostatic potential is modeled by fixed point charges. Among other consequences, the lack of polarizability in these models undermines the balance of hydrophilic/hydrophobic nonbonded interactions. Simulations of water/alkane systems using the TIP3P water model and CHARMM36 parameters reveal a 1 kcal/mol overestimate of the experimental transfer free energy of water to hexadecane; more recent optimized water models (SPC/E, TIP4P/2005, TIP4P-Ew, TIP3P-FB, TIP4P-FB, OPC, TIP4P-D) overestimate this transfer free energy by approximately 2 kcal/mol. In contrast, the polarizable SWM4-NDP and SWM6 water models reproduce experimental values to within statistical error. As an alternative to explicitly modeling polarizability, this paper develops an efficient automated workflow to optimize pair-specific Lennard-Jones parameters within an additive FF. Water/hexadecane is used as a prototype and the free energy of water transfer to hexadecane as a target. The optimized model yields quantitative agreement with the experimental transfer free energy and improves the water/hexadecane interfacial tension by 6%. Simulations of five different lipid bilayers show a strong increase of water permeabilities compared to the unmodified CHARMM36 lipid FF which consistently improves match with experiment: the order-of-magnitude underestimate for monounsaturated bilayers is rectified and the factor of 2.8-4 underestimate for saturated bilayers is turned into a factor of 1.5-3 overestimate. While agreement with experiment is decreased for the diffusion constant of water in hexadecane, alkane transfer free energies, and the bilayers' area per lipid, the method provides a permeant-specific route to achieve a wide range of heterogeneous observables via rapidly optimized pairwise parameters.
原子尺度的生物分子模拟主要使用加和力场(FF),其中静电势由固定点电荷建模。这些模型中缺乏极化性会导致诸多后果,其中之一是破坏了亲水性/疏水性非键相互作用的平衡。使用TIP3P水模型和CHARMM36参数对水/烷烃体系进行的模拟显示,水转移到十六烷的实验转移自由能被高估了1千卡/摩尔;最近优化的水模型(SPC/E、TIP4P/2005、TIP4P-Ew、TIP3P-FB、TIP4P-FB、OPC、TIP4P-D)将这种转移自由能高估了约2千卡/摩尔。相比之下,可极化的SWM4-NDP和SWM6水模型能将实验值重现到统计误差范围内。作为显式建模极化性的替代方法,本文开发了一种高效的自动化工作流程,以在加和力场中优化特定对的 Lennard-Jones 参数。以水/十六烷为原型,以水转移到十六烷的自由能为目标。优化后的模型与实验转移自由能取得了定量一致,并将水/十六烷界面张力提高了6%。对五种不同脂质双层的模拟表明,与未修改的CHARMM36脂质力场相比,水渗透率大幅增加,这与实验的匹配度持续提高:单不饱和双层中被低估了一个数量级的情况得到了纠正,饱和双层中被低估2.8至4倍的情况转变为被高估1.5至3倍。虽然对于水在十六烷中的扩散常数、烷烃转移自由能以及每个脂质的双层面积,与实验的一致性有所降低,但该方法提供了一条通过快速优化成对参数来实现广泛的非均相可观测值的渗透物特定途径。