Joung In Suk, Cheatham Thomas E
Department of Bioengineering, College of Engineering, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112, USA.
J Phys Chem B. 2008 Jul 31;112(30):9020-41. doi: 10.1021/jp8001614. Epub 2008 Jul 2.
Alkali (Li(+), Na(+), K(+), Rb(+), and Cs(+)) and halide (F(-), Cl(-), Br(-), and I(-)) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Aqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4P EW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.
碱金属离子(Li⁺、Na⁺、K⁺、Rb⁺和Cs⁺)和卤离子(F⁻、Cl⁻、Br⁻和I⁻)在许多生物现象中发挥着重要作用,这些作用涵盖从生物分子结构的稳定,到对生物分子动力学的影响,再到对体内平衡和信号传导的关键生理影响。为了在生物分子结构、动力学、折叠、催化和功能的原子模拟中正确模拟离子相互作用和稳定性,准确的单价离子模型或表示至关重要。一个好的模型需要同时再现离子的许多性质,包括它们的结构、动力学、溶剂化,此外还有这些离子在晶体和溶液中彼此之间的相互作用以及离子与其他分子的相互作用。目前,用于生物分子的最佳力场采用简单的加和、非极化和成对的原子相互作用势。在这项工作中,我们描述了我们在成对库仑和6 - 12 Lennard - Jones框架内构建更好的单价离子模型的努力,其中通过选择特定的知名水模型,对模型进行调整以在Ewald模拟中平衡晶体和溶液性质。尽管已经清楚地表明,真正准确地处理离子需要考虑非加和性和极化性(特别是对于阴离子),甚至最终需要量子力学处理,但我们的目标只是简单地推动加和处理的极限,看看是否可以创建一个平衡的模型。所应用的方法是通用的,可以扩展到其他离子和极化力场模型。我们的出发点是基于使用AMBER力场对盐溶液中的生物分子进行长时间模拟的观察结果,在这些模拟中盐晶体在远低于其溶解度极限的情况下形成。AMBER参数中出现这种假象的可能原因与Smith和Dang的氯离子参数与适应AMBER的Aqvist阳离子参数的简单混合有关。为了提供更合适的平衡,我们重新优化了离子的Lennard - Jones势参数以及特定的水模型选择。为了验证和优化这些参数,我们计算了溶剂化离子的水合自由能以及碱金属卤化物盐晶体的晶格能(LE)和晶格常数(LC)。这是首次在平衡碱金属离子和卤离子所有对组合的LE和LC等离子性质的同时,系统地扫描Lennard - Jones空间(阱深和半径)。对整个单价系列的优化避免了系统偏差。所开发、优化和表征的离子参数旨在与一些最常用的刚性和非极化水模型一起使用,特别是TIP3P、TIP4P EW和SPC/E。除了很好地再现溶液和晶体性质外,新的离子参数还很好地再现了离子与水的结合能以及第一水合壳层的半径。