Suppr超能文献

从第一性原理出发,使用极化和更高阶色散模型推导出力场参数。

Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model.

机构信息

AIMMS Division of Molecular Toxicology, Department of Chemistry and Pharmaceutical Sciences, Faculty of Science , Vrije Universiteit Amsterdam , De Boelelaan 1108 , 1081 HZ Amsterdam , the Netherlands.

出版信息

J Chem Theory Comput. 2019 Mar 12;15(3):1875-1883. doi: 10.1021/acs.jctc.8b01105. Epub 2019 Feb 14.

Abstract

In this work we propose a strategy based on quantum mechanical (QM) calculations to parametrize a polarizable force field for use in molecular dynamics (MD) simulations. We investigate the use of multiple atoms-in-molecules (AIM) strategies to partition QM determined molecular electron densities into atomic subregions. The partitioned atomic densities are subsequently used to compute atomic dispersion coefficients from effective exchange-hole-dipole moment (XDM) calculations. In order to derive values for the repulsive van der Waals parameters from first principles, we use a simple volume relation to scale effective atomic radii. Explicit inclusion of higher order dispersion coefficients was tested for a series of alkanes, and we show that combining C and C attractive terms together with a C repulsive potential yields satisfying models when used in combination with our van der Waals parameters and electrostatic and bonded parameters as directly obtained from quantum calculations as well. This result highlights that explicit inclusion of higher order dispersion terms could be viable in simulation, and it suggests that currently available QM analysis methods allow for first-principles parametrization of molecular mechanics models.

摘要

在这项工作中,我们提出了一种基于量子力学(QM)计算的策略,用于参数化极化力场,以用于分子动力学(MD)模拟。我们研究了使用多种原子在分子(AIM)策略将 QM 确定的分子电子密度分配到原子子区域。然后,使用有效交换孔偶极矩(XDM)计算来计算分区原子密度的原子色散系数。为了从第一性原理推导出排斥范德华参数的值,我们使用简单的体积关系来缩放有效原子半径。我们对一系列烷烃进行了高阶色散系数的显式包含测试,并表明当与我们的范德华参数以及静电和键合参数结合使用时,将 C 和 C 吸引项组合在一起,并使用 C 排斥势,可以得到令人满意的模型,这些参数直接从量子计算中获得。这一结果表明,在模拟中显式包含高阶色散项是可行的,并且表明目前可用的 QM 分析方法允许对分子力学模型进行第一性原理参数化。

相似文献

引用本文的文献

4
A collection of forcefield precursors for metal-organic frameworks.金属有机框架的力场前体集合。
RSC Adv. 2019 Nov 13;9(63):36492-36507. doi: 10.1039/c9ra07327b. eCollection 2019 Nov 11.
9
Development and Validation of the Quantum Mechanical Bespoke Protein Force Field.量子力学定制蛋白质力场的开发与验证。
ACS Omega. 2019 Aug 27;4(11):14537-14550. doi: 10.1021/acsomega.9b01769. eCollection 2019 Sep 10.

本文引用的文献

1
QUBEKit: Automating the Derivation of Force Field Parameters from Quantum Mechanics.QUBEKit:从量子力学中自动推导出力场参数。
J Chem Inf Model. 2019 Apr 22;59(4):1366-1381. doi: 10.1021/acs.jcim.8b00767. Epub 2019 Feb 22.
2
Toward Learned Chemical Perception of Force Field Typing Rules.朝着学习化学感知力场类型规则的方向发展。
J Chem Theory Comput. 2019 Jan 8;15(1):402-423. doi: 10.1021/acs.jctc.8b00821. Epub 2018 Dec 24.
3
Escaping Atom Types in Force Fields Using Direct Chemical Perception.利用直接化学感知逃避力场中的原子类型。
J Chem Theory Comput. 2018 Nov 13;14(11):6076-6092. doi: 10.1021/acs.jctc.8b00640. Epub 2018 Oct 30.
5
Developing a molecular dynamics force field for both folded and disordered protein states.为折叠和无序的蛋白质状态开发分子动力学力场。
Proc Natl Acad Sci U S A. 2018 May 22;115(21):E4758-E4766. doi: 10.1073/pnas.1800690115. Epub 2018 May 7.
6
Optimized Lennard-Jones Parameters for Druglike Small Molecules.优化适用于类药性小分子的 Lennard-Jones 参数。
J Chem Theory Comput. 2018 Jun 12;14(6):3121-3131. doi: 10.1021/acs.jctc.8b00172. Epub 2018 May 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验