Suppr超能文献

利用生物网络解决肝脏疾病的异质性。

Addressing the heterogeneity in liver diseases using biological networks.

机构信息

Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, United Kingdom; Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, SE-17121, Sweden.

出版信息

Brief Bioinform. 2021 Mar 22;22(2):1751-1766. doi: 10.1093/bib/bbaa002.

Abstract

The abnormalities in human metabolism have been implicated in the progression of several complex human diseases, including certain cancers. Hence, deciphering the underlying molecular mechanisms associated with metabolic reprogramming in a disease state can greatly assist in elucidating the disease aetiology. An invaluable tool for establishing connections between global metabolic reprogramming and disease development is the genome-scale metabolic model (GEM). Here, we review recent work on the reconstruction of cell/tissue-type and cancer-specific GEMs and their use in identifying metabolic changes occurring in response to liver disease development, stratification of the heterogeneous disease population and discovery of novel drug targets and biomarkers. We also discuss how GEMs can be integrated with other biological networks for generating more comprehensive cell/tissue models. In addition, we review the various biological network analyses that have been employed for the development of efficient treatment strategies. Finally, we present three case studies in which independent studies converged on conclusions underlying liver disease.

摘要

人类代谢异常与多种复杂人类疾病(包括某些癌症)的进展有关。因此,阐明疾病状态下与代谢重编程相关的潜在分子机制,可以极大地帮助阐明疾病发病机制。用于建立全局代谢重编程与疾病发展之间联系的宝贵工具是基因组规模代谢模型(GEM)。在这里,我们回顾了最近关于细胞/组织类型和癌症特异性 GEM 重建及其在识别响应肝脏疾病发展、异质疾病人群分层以及发现新的药物靶点和生物标志物而发生的代谢变化方面的应用的工作。我们还讨论了如何将 GEM 与其他生物网络集成以生成更全面的细胞/组织模型。此外,我们还回顾了用于开发有效治疗策略的各种生物网络分析。最后,我们提出了三个案例研究,其中独立的研究得出了肝脏疾病的基本结论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2cc1/7986590/432f5eb0f90c/bbaa002f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验