Institut du Cerveau et de la Moelle épinière (ICM), Inserm U 1127, CNRS UMR 7225, Sorbonne Université, Paris, France.
Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, Paris, France.
PLoS Biol. 2019 Apr 19;17(4):e3000235. doi: 10.1371/journal.pbio.3000235. eCollection 2019 Apr.
Multiple types of microvilliated sensory cells exhibit an apical extension thought to be instrumental in the detection of sensory cues. The investigation of the mechanisms underlying morphogenesis of sensory apparatus is critical to understand the biology of sensation. Most of what we currently know comes from the study of the hair bundle of the inner ear sensory cells, but morphogenesis and function of other sensory microvilliated apical extensions remain poorly understood. We focused on spinal sensory neurons that contact the cerebrospinal fluid (CSF) through the projection of a microvilliated apical process in the central canal, referred to as cerebrospinal fluid-contacting neurons (CSF-cNs). CSF-cNs respond to pH and osmolarity changes as well as mechanical stimuli associated with changes of flow and tail bending. In vivo time-lapse imaging in zebrafish embryos revealed that CSF-cNs are atypical neurons that do not lose their apical attachment and form a ring of actin at the apical junctional complexes (AJCs) that they retain during differentiation. We show that the actin-based protrusions constituting the microvilliated apical extension arise and elongate from this ring of actin, and we identify candidate molecular factors underlying every step of CSF-cN morphogenesis. We demonstrate that Crumbs 1 (Crb1), Myosin 3b (Myo3b), and Espin orchestrate the morphogenesis of CSF-cN apical extension. Using calcium imaging in crb1 and espin mutants, we further show that the size of the apical extension modulates the amplitude of CSF-cN sensory response to bending of the spinal cord. Based on our results, we propose that the apical actin ring could be a common site of initiation of actin-based protrusions in microvilliated sensory cells. Furthermore, our work provides a set of actors underlying actin-based protrusion elongation shared by different sensory cell types and highlights the critical role of the apical extension shape in sensory detection.
多种微绒毛感觉细胞都表现出顶端延伸,这被认为对感觉线索的检测很重要。研究感觉器官形态发生的机制对于理解感觉生物学至关重要。我们目前所知道的大部分内容都来自内耳感觉细胞毛束的研究,但其他微绒毛状顶端延伸的形态发生和功能仍知之甚少。我们专注于通过中央管中微绒毛状顶端突起与脑脊液(CSF)接触的脊髓感觉神经元,这些神经元被称为脑脊液接触神经元(CSF-cN)。CSF-cN 对 pH 值和渗透压变化以及与流动和尾部弯曲变化相关的机械刺激做出反应。斑马鱼胚胎的体内延时成像显示,CSF-cN 是一种非典型神经元,它们不会失去顶端附着,并在分化过程中在顶端连接复合体(AJC)处形成一个肌动蛋白环。我们表明,构成微绒毛状顶端延伸的肌动蛋白突起从这个肌动蛋白环中出现并延伸,并且我们确定了 CSF-cN 形态发生的每一步骤背后的候选分子因素。我们证明了 Crumbs 1(Crb1)、肌球蛋白 3b(Myo3b)和 Espin 协调 CSF-cN 顶端延伸的形态发生。通过在 crb1 和 espin 突变体中进行钙成像,我们进一步表明,顶端延伸的大小调节了 CSF-cN 对脊髓弯曲的感觉反应幅度。基于我们的结果,我们提出顶端肌动蛋白环可能是微绒毛状感觉细胞中肌动蛋白突起起始的共同部位。此外,我们的工作提供了一组不同感觉细胞类型共有的肌动蛋白突起延伸的基础因子,并强调了顶端延伸形状在感觉检测中的关键作用。