Shepard Stuart, Smeu Manuel
Department of Physics, Binghamton University-SUNY, 4400 Vestal Parkway East, Binghamton, New York 13902, USA.
J Chem Phys. 2019 Apr 21;150(15):154702. doi: 10.1063/1.5046855.
Integrating graphene into electronic devices requires support by a substrate and contact with metal electrodes. Ab initio calculations at the level of density functional theory are performed on graphene-fcc-metal(111) [Gr/M(111)] (M = Ni, Cu, Au) systems. The strongly constrained and appropriately normed (SCAN) and SCAN with the revised Vydrov-van Voorhis (SCAN+rVV10) functionals are relatively new approximations to the exchange-correlation (xc) energy shown to account for van der Waals (vdW) interactions which many non-empirical semi-local functionals fail to include. Binding energies and distances as well as electronic band structures are calculated with SCAN, SCAN+rVV10, Perdew-Burke-Ernzerhof (PBE), and PBE-D3 with and without Becke-Johnson damping, Bayesian error estimation functional with van der Waals correlation (BEEF-vdW), and optB86b-vdW. SCAN and SCAN+rVV10 succeed in describing chemisorption and physisorption in the Gr/Ni(111) system and physisorption in the Gr/Cu(111) and Gr/Au(111) systems. Incorrectly, the physisorption is found to be more favorable than chemisorption in the Gr/Ni(111) system with SCAN, but the result is reversed when the experimental bulk Ni lattice parameter is used as opposed to the SCAN calculated lattice parameter. The SCAN+rVV10 functional produces binding energies and distances comparable to those calculated using the random phase approximation as well as the experiment. The SCAN based functionals produce the highest spin magnetic moments in the bulk Ni and Gr/Ni(111) systems compared to the rest of the functionals investigated, overestimating the experiment by at least ∼0.18 μ. Also, in contrast to the rest of the functionals, the induced spin magnetic moment in graphene is found to be larger in magnitude in the physisorption region than the chemisorption region. The pristine graphene band structure is preserved in the physisorbed systems but with a shift in the Dirac point away from the Fermi energy causing graphene to become n-doped in the Gr/Cu(111) system and p-doped in the Gr/Au(111) system. Chemisorption occurs in the Gr/Ni(111) system where carbon p states mix with the nickel d states causing a gap to form at the K point, destroying the Dirac point and conical dispersion.
将石墨烯集成到电子器件中需要衬底的支撑以及与金属电极的接触。在石墨烯 - 面心立方金属(111)[Gr/M(111)](M = Ni、Cu、Au)体系上进行了密度泛函理论水平的从头算计算。强约束且适当归一化(SCAN)以及带有修正的Vydrov - van Voorhis(SCAN + rVV10)泛函是相对较新的交换关联(xc)能量近似,已证明其能考虑许多非经验半局域泛函未包含的范德华(vdW)相互作用。使用SCAN、SCAN + rVV10、Perdew - Burke - Ernzerhof(PBE)以及带和不带Becke - Johnson阻尼的PBE - D3、具有范德华关联的贝叶斯误差估计泛函(BEEF - vdW)和optB86b - vdW计算了结合能、距离以及电子能带结构。SCAN和SCAN + rVV10成功地描述了Gr/Ni(111)体系中的化学吸附和物理吸附以及Gr/Cu(111)和Gr/Au(111)体系中的物理吸附。错误的是,在使用SCAN的Gr/Ni(111)体系中发现物理吸附比化学吸附更有利,但当使用实验体相Ni晶格参数而非SCAN计算的晶格参数时,结果相反。SCAN + rVV10泛函产生的结合能和距离与使用随机相位近似以及实验计算得到的结果相当。与所研究的其他泛函相比,基于SCAN的泛函在体相Ni和Gr/Ni(111)体系中产生的自旋磁矩最高,比实验值至少高估约0.18 μ。此外,与其他泛函不同的是,在石墨烯中发现物理吸附区域的诱导自旋磁矩大小比化学吸附区域的更大。在物理吸附体系中,原始石墨烯的能带结构得以保留,但狄拉克点从费米能级发生了移动,导致在Gr/Cu(111)体系中石墨烯变为n型掺杂,在Gr/Au(111)体系中变为p型掺杂。化学吸附发生在Gr/Ni(111)体系中,其中碳p态与镍d态混合,导致在K点形成一个能隙,破坏了狄拉克点和锥形色散。