Department of Physics, Temple University, Philadelphia, PA 19122;
Department of Physics, Temple University, Philadelphia, PA 19122.
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9188-E9196. doi: 10.1073/pnas.1713320114. Epub 2017 Oct 17.
We have computed the surface energies, work functions, and interlayer surface relaxations of clean (111), (100), and (110) surfaces of Al, Cu, Ru, Rh, Pd, Ag, Pt, and Au. We interpret the surface energy from liquid metal measurements as the mean of the solid-state surface energies over these three lowest-index crystal faces. We compare experimental (and random phase approximation) reference values to those of a family of nonempirical semilocal density functionals, from the basic local density approximation (LDA) to our most advanced general purpose meta-generalized gradient approximation, strongly constrained and appropriately normed (SCAN). The closest agreement is achieved by the simplest density functional LDA, and by the most sophisticated one, SCAN+rVV10 (Vydrov-Van Voorhis 2010). The long-range van der Waals interaction, incorporated through rVV10, increases the surface energies by about 10%, and increases the work functions by about 3%. LDA works for metal surfaces through two known error cancellations. The Perdew-Burke-Ernzerhof generalized gradient approximation tends to underestimate both surface energies (by about 24%) and work functions (by about 4%), yielding the least-accurate results. The amount by which a functional underestimates these surface properties correlates with the extent to which it neglects van der Waals attraction at intermediate and long range. Qualitative arguments are given for the signs of the van der Waals contributions to the surface energy and work function. A standard expression for the work function in Kohn-Sham (KS) theory is shown to be valid in generalized KS theory. Interlayer relaxations from different functionals are in reasonable agreement with one another, and usually with experiment.
我们已经计算了清洁的(111)、(100)和(110)面的 Al、Cu、Ru、Rh、Pd、Ag、Pt 和 Au 的表面能、功函数和层间表面弛豫。我们将液态金属测量中的表面能解释为这三个最低指数晶面的固态表面能的平均值。我们将实验(和随机相位近似)参考值与一系列非经验半局部密度泛函进行了比较,从基本局部密度近似(LDA)到我们最先进的通用广义梯度近似,强烈约束和适当规范(SCAN)。最简单的密度泛函 LDA 和最复杂的密度泛函 SCAN+rVV10(Vydrov-Van Voorhis 2010)最接近。通过 rVV10 包含的长程范德华相互作用将表面能提高约 10%,将功函数提高约 3%。LDA 通过两个已知的误差抵消作用适用于金属表面。Perdew-Burke-Ernzerhof 广义梯度近似倾向于低估表面能(约 24%)和功函数(约 4%),从而产生最不准确的结果。功能低估这些表面性质的程度与它在中间和长程忽略范德华吸引力的程度相关。给出了范德华对表面能和功函数贡献的符号的定性论证。还证明了 Kohn-Sham(KS)理论中功函数的标准表达式在广义 KS 理论中是有效的。不同泛函的层间弛豫彼此之间以及通常与实验结果相符。