Boese A Daniel, Jansen Georg
Institute of Chemistry, Physical and Theoretical Chemistry, University of Graz, Heinrichstrasse 28/IV, 8010 Graz, Austria.
Faculty of Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45117 Essen, Germany.
J Chem Phys. 2019 Apr 21;150(15):154101. doi: 10.1063/1.5087208.
Symmetry Adapted Perturbation Theory (SAPT) has become an important tool when predicting and analyzing intermolecular interactions. Unfortunately, Density Functional Theory (DFT)-SAPT, which uses DFT for the underlying monomers, has some arbitrariness concerning the exchange-correlation potential and the exchange-correlation kernel involved. By using ab initio Brueckner Doubles densities and constructing Kohn-Sham orbitals via the Zhao-Morrison-Parr (ZMP) method, we are able to lift the dependence of DFT-SAPT on DFT exchange-correlation potential models in first order. This way, we can compute the monomers at the coupled-cluster level of theory and utilize SAPT for the intermolecular interaction energy. The resulting ZMP-SAPT approach is tested for small dimer systems involving rare gas atoms, cations, and anions and shown to compare well with the Tang-Toennies model and coupled cluster results.
对称适配微扰理论(SAPT)已成为预测和分析分子间相互作用的重要工具。不幸的是,将密度泛函理论(DFT)用于基础单体的DFT-SAPT,在涉及的交换相关势和交换相关核方面存在一些任意性。通过使用从头算的布吕克纳双电子密度,并通过赵-莫里森-帕尔(ZMP)方法构建科恩-沈轨道,我们能够在一阶消除DFT-SAPT对DFT交换相关势模型的依赖。通过这种方式,我们可以在耦合簇理论水平上计算单体,并利用SAPT计算分子间相互作用能。由此产生的ZMP-SAPT方法在涉及稀有气体原子、阳离子和阴离子的小双聚体系统中进行了测试,结果表明与唐-托尼斯模型和耦合簇结果相比具有良好的一致性。