Suppr超能文献

使用新型对称自适应微扰理论预测和理解非共价相互作用。

Predicting and Understanding Non-Covalent Interactions Using Novel Forms of Symmetry-Adapted Perturbation Theory.

机构信息

Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States.

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284, United States.

出版信息

Acc Chem Res. 2021 Oct 5;54(19):3679-3690. doi: 10.1021/acs.accounts.1c00387. Epub 2021 Sep 22.

Abstract

Although sometimes derided as "weak" interactions, non-covalent forces play a critical role in ligand binding and crystal packing and in determining the conformational landscape of flexible molecules. Symmetry-adapted perturbation theory (SAPT) provides a framework for accurate calculation of intermolecular interactions and furnishes a natural decomposition of the interaction energy into physically meaningful components: semiclassical electrostatics (rigorously obtained from monomer charge densities), Pauli or steric repulsion, induction (including both polarization and charge transfer), and dispersion. This decomposition helps to foster deeper understanding of non-covalent interactions and can be used to construct transferable, physics-based force fields. Separability of the SAPT interaction energy also provides the flexibility to construct composite methods, a feature that we exploit to improve the description of dispersion interactions. These are challenging to describe accurately because they arise from nonlocal electron correlation effects that appear for the first time at second order in perturbation theory but are not quantitatively described at that level.As with all quantum-chemical methods, a major limitation of SAPT is nonlinear scaling of the computational cost with respect to system size. This cost can be significantly mitigated using "SAPT0(KS)", which incorporates monomer electron correlation by means of Kohn-Sham (KS) molecular orbitals from density functional theory (DFT), as well as by an "extended" theory called XSAPT, developed by the authors. XSAPT generalizes traditional dimer SAPT to many-body systems, so that a ligand-protein interaction (for example) can be separated into contributions from individual amino acids, reducing the cost of the calculation below that of even supramolecular DFT while retaining the accuracy of high-level quantum chemistry.This Account provides an overview of the SAPT0(KS) approach and the XSAPT family of methods. Several low-cost variants are described that provide accuracy approaching that of the best benchmarks yet are affordable enough to tackle ligand-protein binding and sizable host-guest complexes. These variants include SAPT+D, which uses atom-atom dispersion potentials ("+D") in place of second-order SAPT dispersion, and also SAPT+MBD, which incorporates many-body dispersion (MBD) effects that are important in the description of nanoscale materials. Applications to drug binding highlight the size-extensive nature of dispersion, which is not a weak interaction in large systems. Other applications highlight how a physics-based analysis can sometimes upend conventional wisdom regarding intermolecular forces. In particular, careful reconsideration of π-π interactions makes clear that the quadrupolar electrostatics (or "Hunter-Sanders") model of π-π stacking should be replaced by a "van der Waals model" in which conformational preferences arise from a competition between dispersion and Pauli repulsion. Our analysis also suggests that molecular shape, rather than aromaticity , is the key factor driving strong stacking interactions. Looking forward, we anticipate that XSAPT-based methods can play a role in screening of drug candidates and in materials design.

摘要

虽然有时被嘲笑为“弱”相互作用,但非共价相互作用在配体结合和晶体堆积以及确定柔性分子的构象景观方面起着关键作用。对称适应微扰理论 (SAPT) 为准确计算分子间相互作用提供了一个框架,并为相互作用能提供了自然的分解,分解为物理意义上的组成部分:半经典静电(从单体电荷密度中严格获得),Paul 或位阻排斥,诱导(包括极化和电荷转移)和色散。这种分解有助于促进对非共价相互作用的更深理解,并可用于构建可转移的基于物理的力场。SAPT 相互作用能的可分离性还提供了构建组合方法的灵活性,这是我们利用来改善色散相互作用描述的特性。这些相互作用很难准确描述,因为它们来自于电子相关效应,这些效应首次出现在微扰理论的二阶,但在该水平上并未定量描述。

与所有量子化学方法一样,SAPT 的一个主要限制是计算成本与系统大小的非线性缩放。通过使用基于密度泛函理论 (DFT) 的 Kohn-Sham (KS) 分子轨道的“SAPT0(KS)”以及作者开发的称为 XSAPT 的“扩展”理论,可以显著减轻这种成本。XSAPT 将传统的二聚体 SAPT 推广到多体系统,因此配体-蛋白质相互作用(例如)可以分解为单个氨基酸的贡献,从而使计算成本低于甚至超分子 DFT 的成本,同时保持高水平量子化学的准确性。

本账户提供了 SAPT0(KS) 方法和 XSAPT 方法系列的概述。描述了几种低成本变体,这些变体提供了接近最佳基准的精度,但价格实惠,足以处理配体-蛋白质结合和较大的主体-客体络合物。这些变体包括 SAPT+D,它使用原子-原子色散势(“+D”)代替二阶 SAPT 色散,以及 SAPT+MBD,它包含在描述纳米材料时很重要的多体色散 (MBD) 效应。药物结合的应用突出了色散的尺寸扩展性,在大系统中,它不是一种弱相互作用。其他应用突出了基于物理的分析有时如何颠覆分子间力的传统观念。特别是,对 π-π 相互作用的仔细重新考虑清楚表明,π-π 堆积的偶极静电(或“Hunter-Sanders”)模型应该被“范德华模型”取代,其中构象偏好是由色散和 Pauli 排斥之间的竞争产生的。我们的分析还表明,分子形状而不是芳香性是驱动强堆积相互作用的关键因素。展望未来,我们预计基于 XSAPT 的方法可以在药物候选物的筛选和材料设计中发挥作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验