Bueno Rebeca, Marciello Marzia, Moreno Miguel, Sánchez-Sánchez Carlos, Martinez José I, Martinez Lidia, Prats-Alfonso Elisabet, Guimerà-Brunet Anton, Garrido Jose A, Villa Rosa, Mompean Federico, García-Hernandez Mar, Huttel Yves, Del Puerto Morales María, Briones Carlos, López María F, Ellis Gary J, Vázquez Luis, Martín-Gago José A
Materials Science Factory, Institute of Materials Science of Madrid (ICMM-CSIC), Sor Juana Inés de la Cruz 3, 28049 Madrid, Spain.
Nanobiotechnology for Life Sciences Group, Department of Chemistry in Pharmaceutical Sciences, Faculty of Pharmacy, Complutense University (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain.
ACS Omega. 2019 Feb 14;4(2):3287-3297. doi: 10.1021/acsomega.8b03152.
Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multitechnique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.
用于器件的具有技术实用性和稳健性的基于石墨烯的界面,需要在石墨烯表面引入高度选择性、稳定且共价键合的官能团,同时基本保留原始层的电子特性。这项工作表明,用硫醇封端的分子对石墨烯片进行高度可控的超高真空共价化学功能化,为在不同环境中开发混合纳米结构提供了一个稳健且可调谐的平台。我们采用这种简便策略共价偶联两个具有广泛研究兴趣的代表性体系:通过S-金属键连接金属纳米颗粒,以及通过二硫键连接硫醇修饰的DNA适配体。这两个体系均采用多技术方法进行了表征,即使经过多次洗涤循环后仍牢固地锚定在石墨烯表面。原子力显微镜图像表明,共轭适配体保留了识别靶蛋白所需的功能。这种方法为将高质量石墨烯层集成到包括等离子体学、光电子学或生物传感在内的各种技术平台开辟了一条新途径。关于后者,评估了基于硫醇功能化化学气相沉积石墨烯的溶液门控场效应晶体管阵列的可行性。