Suppr超能文献

理解具有时间密集型纵向结局数据的个体间干预措施:纵向中介分析。

Understanding Between-Person Interventions With Time-Intensive Longitudinal Outcome Data: Longitudinal Mediation Analyses.

机构信息

Department of Psychology, Applied Social and Health Psychology, University of Zurich, Binzmuehlestrasse, Zurich, Switzerland.

Institute of Psychology, University of Bern, Bern, Switzerland.

出版信息

Ann Behav Med. 2021 May 6;55(5):476-488. doi: 10.1093/abm/kaaa066.

Abstract

BACKGROUND

Mediation analysis is an important tool for understanding the processes through which interventions affect health outcomes over time. Typically the temporal intervals between X, M, and Y are fixed by design, and little focus is given to the temporal dynamics of the processes.

PURPOSE

In this article, we aim to highlight the importance of considering the timing of the causal effects of a between-person intervention X, on M and Y, resulting in a deeper understanding of mediation.

METHODS

We provide a framework for examining the impact of a between-person intervention X on M and Y over time when M and Y are measured repeatedly. Five conceptual and analytic steps involve visualizing the effects of the intervention on Y, M, the relationship of M and Y, and the mediating process over time and selecting an appropriate analytic model.

RESULTS

We demonstrate how these steps can be applied to two empirical examples of health behavior change interventions. We show that the patterns of longitudinal mediation can be fit with versions of longitudinal multilevel structural equation models that represent how the magnitude of direct and indirect effects vary over time.

CONCLUSIONS

We urge researchers and methodologists to pay more attention to temporal dynamics in the causal analysis of interventions.

摘要

背景

中介分析是理解干预措施随时间如何影响健康结果的重要工具。通常情况下,X、M 和 Y 之间的时间间隔是由设计固定的,而很少关注这些过程的时间动态。

目的

本文旨在强调考虑个体间干预 X 对 M 和 Y 的因果效应发生时间的重要性,从而更深入地理解中介分析。

方法

当 M 和 Y 被重复测量时,我们提供了一个框架来检验个体间干预 X 对 M 和 Y 的随时间变化的影响。五个概念和分析步骤包括可视化干预对 Y、M、M 和 Y 之间关系以及中介过程的影响,以及选择适当的分析模型。

结果

我们展示了如何将这些步骤应用于两个健康行为改变干预的实证示例。我们表明,纵向中介的模式可以用代表直接和间接效应随时间变化的纵向多层结构方程模型的版本来拟合。

结论

我们敦促研究人员和方法学家更加关注干预因果分析中的时间动态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/411f/8122473/67e766f9284b/kaaa066f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验