Suppr超能文献

具有超高维特征的多类线性判别分析

Multiclass linear discriminant analysis with ultrahigh-dimensional features.

作者信息

Li Yanming, Hong Hyokyoung G, Li Yi

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.

Department of Statistics and Probability, Michigan State University, East Lansing, Michigan.

出版信息

Biometrics. 2019 Dec;75(4):1086-1097. doi: 10.1111/biom.13065. Epub 2019 Jun 18.

Abstract

Within the framework of Fisher's discriminant analysis, we propose a multiclass classification method which embeds variable screening for ultrahigh-dimensional predictors. Leveraging interfeature correlations, we show that the proposed linear classifier recovers informative features with probability tending to one and can asymptotically achieve a zero misclassification rate. We evaluate the finite sample performance of the method via extensive simulations and use this method to classify posttransplantation rejection types based on patients' gene expressions.

摘要

在Fisher判别分析的框架下,我们提出了一种多类分类方法,该方法对超高维预测变量进行变量筛选。利用特征间的相关性,我们表明所提出的线性分类器以趋于1的概率恢复信息特征,并且可以渐近地实现零误分类率。我们通过广泛的模拟评估了该方法的有限样本性能,并使用此方法基于患者的基因表达对移植后排斥类型进行分类。

相似文献

1
Multiclass linear discriminant analysis with ultrahigh-dimensional features.
Biometrics. 2019 Dec;75(4):1086-1097. doi: 10.1111/biom.13065. Epub 2019 Jun 18.
2
A simulation-approximation approach to sample size planning for high-dimensional classification studies.
Biostatistics. 2009 Jul;10(3):424-35. doi: 10.1093/biostatistics/kxp001. Epub 2009 Feb 21.
3
Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening.
J Am Stat Assoc. 2016;111(513):169-179. doi: 10.1080/01621459.2014.998760. Epub 2016 May 5.
4
A novel hybrid linear/nonlinear classifier for two-class classification: theory, algorithm, and applications.
IEEE Trans Med Imaging. 2010 Feb;29(2):428-41. doi: 10.1109/TMI.2009.2033596. Epub 2009 Oct 9.
5
A linear feature extraction for multiclass classification problems based on class mean and covariance discriminant information.
IEEE Trans Pattern Anal Mach Intell. 2006 Feb;28(2):223-35. doi: 10.1109/TPAMI.2006.26.
7
Stable feature selection and classification algorithms for multiclass microarray data.
Biol Direct. 2012 Oct 2;7:33. doi: 10.1186/1745-6150-7-33.
8
Covariance-enhanced discriminant analysis.
Biometrika. 2015;102(1):33-45. doi: 10.1093/biomet/asu049. Epub 2014 Dec 3.
9
Locally linear discriminant analysis for multimodally distributed classes for face recognition with a single model image.
IEEE Trans Pattern Anal Mach Intell. 2005 Mar;27(3):318-327. doi: 10.1109/TPAMI.2005.58.
10
Sparse ordinal discriminant analysis.
Biometrics. 2024 Jan 29;80(1). doi: 10.1093/biomtc/ujad040.

引用本文的文献

1
Predicting late-stage age-related macular degeneration by integrating marginally weak SNPs in GWA studies.
Front Genet. 2023 Mar 30;14:1075824. doi: 10.3389/fgene.2023.1075824. eCollection 2023.
2
A Structured Brain-wide and Genome-wide Association Study Using ADNI PET Images.
Can J Stat. 2021 Mar;49(1):182-202. doi: 10.1002/cjs.11605. Epub 2021 Feb 20.

本文引用的文献

1
Tractable Bayesian variable selection: beyond normality.
J Am Stat Assoc. 2018;113(524):1742-1758. doi: 10.1080/01621459.2017.1371025. Epub 2018 Jun 28.
2
BPI Fold-Containing Family A Member 2/Parotid Secretory Protein Is an Early Biomarker of AKI.
J Am Soc Nephrol. 2017 Dec;28(12):3473-3478. doi: 10.1681/ASN.2016121265. Epub 2017 Aug 3.
3
Ultrahigh-Dimensional Multiclass Linear Discriminant Analysis by Pairwise Sure Independence Screening.
J Am Stat Assoc. 2016;111(513):169-179. doi: 10.1080/01621459.2014.998760. Epub 2016 May 5.
4
Covariance-enhanced discriminant analysis.
Biometrika. 2015;102(1):33-45. doi: 10.1093/biomet/asu049. Epub 2014 Dec 3.
5
Bayesian variable selection for binary outcomes in high-dimensional genomic studies using non-local priors.
Bioinformatics. 2016 May 1;32(9):1338-45. doi: 10.1093/bioinformatics/btv764. Epub 2016 Jan 6.
6
COVARIANCE ASSISTED SCREENING AND ESTIMATION.
Ann Stat. 2014 Nov 1;42(6):2202-2242. doi: 10.1214/14-AOS1243.
7
On Numerical Aspects of Bayesian Model Selection in High and Ultrahigh-dimensional Settings.
Bayesian Anal. 2013 Dec 1;8(4):741-758. doi: 10.1214/13-BA818.
8
Bayesian Model Selection in High-Dimensional Settings.
J Am Stat Assoc. 2012;107(498). doi: 10.1080/01621459.2012.682536.
10
A ROAD to Classification in High Dimensional Space.
J R Stat Soc Series B Stat Methodol. 2012 Sep;74(4):745-771. doi: 10.1111/j.1467-9868.2012.01029.x. Epub 2012 Apr 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验