Li Yanming, Hong Hyokyoung G, Li Yi
Department of Biostatistics, University of Michigan, Ann Arbor, Michigan.
Department of Statistics and Probability, Michigan State University, East Lansing, Michigan.
Biometrics. 2019 Dec;75(4):1086-1097. doi: 10.1111/biom.13065. Epub 2019 Jun 18.
Within the framework of Fisher's discriminant analysis, we propose a multiclass classification method which embeds variable screening for ultrahigh-dimensional predictors. Leveraging interfeature correlations, we show that the proposed linear classifier recovers informative features with probability tending to one and can asymptotically achieve a zero misclassification rate. We evaluate the finite sample performance of the method via extensive simulations and use this method to classify posttransplantation rejection types based on patients' gene expressions.
在Fisher判别分析的框架下,我们提出了一种多类分类方法,该方法对超高维预测变量进行变量筛选。利用特征间的相关性,我们表明所提出的线性分类器以趋于1的概率恢复信息特征,并且可以渐近地实现零误分类率。我们通过广泛的模拟评估了该方法的有限样本性能,并使用此方法基于患者的基因表达对移植后排斥类型进行分类。