Suppr超能文献

可处理的贝叶斯变量选择:超越正态性

Tractable Bayesian variable selection: beyond normality.

作者信息

Rossell David, Rubio Francisco J

机构信息

Universitat Pompeu Fabra, Department of Business and Economics, Barcelona (Spain).

London School of Hygiene & Tropical Medicine, London (United Kingdom).

出版信息

J Am Stat Assoc. 2018;113(524):1742-1758. doi: 10.1080/01621459.2017.1371025. Epub 2018 Jun 28.

Abstract

Bayesian variable selection often assumes normality, but the effects of model misspecification are not sufficiently understood. There are sound reasons behind this assumption, particularly for large : ease of interpretation, analytical and computational convenience. More flexible frameworks exist, including semi- or non-parametric models, often at the cost of some tractability. We propose a simple extension that allows for skewness and thicker-than-normal tails but preserves tractability. It leads to easy interpretation and a log-concave likelihood that facilitates optimization and integration. We characterize asymptotically parameter estimation and Bayes factor rates, under certain model misspecification. Under suitable conditions misspecified Bayes factors induce sparsity at the same rates than under the correct model. However, the rates to detect signal change by an exponential factor, often reducing sensitivity. These deficiencies can be ameliorated by inferring the error distribution, a simple strategy that can improve inference substantially. Our work focuses on the likelihood and can be combined with any likelihood penalty or prior, but here we focus on non-local priors to induce extra sparsity and ameliorate finite-sample effects caused by misspecification. We show the importance of considering the likelihood rather than solely the prior, for Bayesian variable selection. The methodology is in R package 'mombf'.

摘要

贝叶斯变量选择通常假定数据服从正态分布,但模型误设的影响尚未得到充分理解。这一假设背后有合理的原因,尤其是对于大数据集而言:易于解释、分析和计算方便。也存在更灵活的框架,包括半参数或非参数模型,但往往要以牺牲一定的易处理性为代价。我们提出了一种简单的扩展方法,它允许数据具有偏态和比正态分布更厚的尾部,同时保持易处理性。它易于解释,并且对数似然函数是凹函数,便于进行优化和积分。在某些模型误设的情况下,我们刻画了渐近参数估计和贝叶斯因子率。在合适的条件下,误设的贝叶斯因子与正确模型下相比,以相同的速率诱导稀疏性。然而,通过指数因子检测信号变化的速率,往往会降低灵敏度。通过推断误差分布可以改善这些不足,这是一种能显著改进推断的简单策略。我们的工作聚焦于似然函数,可以与任何似然惩罚或先验相结合,但这里我们聚焦于非局部先验,以诱导额外的稀疏性并改善由误设引起的有限样本效应。我们展示了在贝叶斯变量选择中考虑似然函数而非仅仅考虑先验的重要性。该方法在R包“mombf”中。

相似文献

1
Tractable Bayesian variable selection: beyond normality.可处理的贝叶斯变量选择:超越正态性
J Am Stat Assoc. 2018;113(524):1742-1758. doi: 10.1080/01621459.2017.1371025. Epub 2018 Jun 28.
2
On the robustness of the adaptive lasso to model misspecification.关于自适应套索对模型误设的稳健性。
Biometrika. 2012 Sep;99(3):717-731. doi: 10.1093/biomet/ass027. Epub 2012 Jul 11.
4
The Effect of Model Misspecification on Semi-Supervised Classification.模型误设对半监督分类的影响。
IEEE Trans Pattern Anal Mach Intell. 2011 Oct;33(10):2093-103. doi: 10.1109/TPAMI.2011.45. Epub 2011 Mar 10.
8
Bayes variable selection in semiparametric linear models.半参数线性模型中的贝叶斯变量选择
J Am Stat Assoc. 2014 Mar 1;109(505):437-447. doi: 10.1080/01621459.2014.881153.
10
Coherent psychometric modelling with Bayesian nonparametrics.基于贝叶斯非参数的连贯心理测量建模。
Br J Math Stat Psychol. 2009 Feb;62(Pt 1):1-20. doi: 10.1348/000711007X246237. Epub 2007 Sep 27.

本文引用的文献

1
NON-LOCAL PRIORS FOR HIGH-DIMENSIONAL ESTIMATION.用于高维估计的非局部先验
J Am Stat Assoc. 2017;112(517):254-265. doi: 10.1080/01621459.2015.1130634. Epub 2017 May 3.
5
ADAPTIVE ROBUST VARIABLE SELECTION.自适应鲁棒变量选择
Ann Stat. 2014 Feb 1;42(1):324-351. doi: 10.1214/13-AOS1191.
6
Bayes variable selection in semiparametric linear models.半参数线性模型中的贝叶斯变量选择
J Am Stat Assoc. 2014 Mar 1;109(505):437-447. doi: 10.1080/01621459.2014.881153.
8
Bayesian Methods for High Dimensional Linear Models.高维线性模型的贝叶斯方法
J Biom Biostat. 2013 Jun 1;1:005. doi: 10.4172/2155-6180.S1-005.
9
Bayesian Model Selection in High-Dimensional Settings.高维情形下的贝叶斯模型选择
J Am Stat Assoc. 2012;107(498). doi: 10.1080/01621459.2012.682536.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验