Zhu Zhengxin, Lu Lei-Lei, Yin Yichen, Shao Jiaxin, Shen Bao, Yao Hong-Bin
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Hefei Science Center of CAS, Department of Applied Chemistry, Center for Micro- and Nanoscale Research and Fabrication , University of Science and Technology of China , Hefei , Anhui 230026 , China.
ACS Appl Mater Interfaces. 2019 May 8;11(18):16578-16585. doi: 10.1021/acsami.9b02184. Epub 2019 Apr 30.
All solid-state lithium (Li) metal batteries (SSLMBs) are attractive for prospective electrochemical energy storage systems on account of their high energy densities and good safeties. However, the incompatible interface between the solid-state electrolyte and Li metal anode limits the ability of SSLMBs. Here, a three-dimensional (3D) electronic and ionic mixed conducting interlayer is proposed to improve the interfacial affinity in SSLMBs. The 3D electronic and ionic mixed conducting interlayer is composed of a Sn/Ni alloy layer-coated Cu nanowire (Cu@SnNi) network. The Li plating demonstrates that the Cu@SnNi network can possess fast Li ion transport channels from the Li metal to LiFePO, acting as a stable interlayer between the Li metal and solid polymer electrolyte. Noticeably, the solid-state LiFePO/Li cell with a Cu@SnNi interlayer exhibits an excellent rate capability (133 mA h g, 2 C; 100 mA h g, 5 C) in comparison to the low rate performance of the cell without the interlayer (117 mA h g, 2 C; 60 mA h g, 5 C). This unique structure design of electronic and ionic mixed conducting interlayer provides an alternative strategy to improve the performance of SSLMBs.
所有固态锂金属电池因其高能量密度和良好的安全性,对未来的电化学储能系统具有吸引力。然而,固态电解质与锂金属负极之间不相容的界面限制了固态锂金属电池的性能。在此,提出了一种三维(3D)电子和离子混合传导中间层,以改善固态锂金属电池中的界面亲和力。三维电子和离子混合传导中间层由涂覆有Sn/Ni合金层的铜纳米线(Cu@SnNi)网络组成。锂电镀表明,Cu@SnNi网络可以拥有从锂金属到磷酸铁锂的快速锂离子传输通道,作为锂金属和固体聚合物电解质之间的稳定中间层。值得注意的是,与没有中间层的电池的低倍率性能(117 mA h g,2 C;60 mA h g,5 C)相比,具有Cu@SnNi中间层的固态磷酸铁锂/锂电池表现出优异的倍率性能(133 mA h g,2 C;100 mA h g,5 C)。这种独特的电子和离子混合传导中间层结构设计为提高固态锂金属电池的性能提供了一种替代策略。