Suppr超能文献

调控掺杂MnO-Au纳米异质结中的热催化增强效应

Tuning Thermal Catalytic Enhancement in Doped MnO-Au Nano-Heterojunctions.

作者信息

Hu Shuhuai, Liu Xiaoyun, Wang Chunrui, Camargo Pedro H C, Wang Jiale

机构信息

Department of Chemistry , University of Helsinki , A.I. Virtasen aukio 1 , FI-00014 Helsinki , Finland.

Departamento de Química Fundamental, Instituto de Química , Universidade de São Paulo , Av. Prof. Lineu Prestes, 748 , 05508-000 São Paulo-SP , Brazil.

出版信息

ACS Appl Mater Interfaces. 2019 May 15;11(19):17444-17451. doi: 10.1021/acsami.9b03879. Epub 2019 May 1.

Abstract

Sodium (Na)- and potassium (K)-doped δ-MnO, which presented different band gaps, were synthesized by a hydrothermal method. Then, uniform Au nanoparticles (NPs) were deposited on MnO to form metal-semiconductor nano-heterojunctions (MnO-Au). By comparing their temperature-dependent thermal catalytic performances, p-aminothiophenol to p, p'-dimercaptoazobenzene conversion was used as proof-of-concept transformations. MnO-Au hybrid materials demonstrated better thermal catalytic performances relative to individual Au NPs. Meanwhile, K-doped MnO-Au, with a MnO support displaying a narrower bandgap, displayed superior catalytic activities relative to Na-doped MnO-Au. To get the same catalytic performance by individual Au NPs, it can be ∼50 K less by Na-doped MnO-Au and ∼100 K less by K-doped MnO-Au. The enhancement is mainly attributed to the thermally excited electrons in MnO, which were transferred to Au NPs. The additional electrons in Au NPs increase the electron density and thus contribute to the improvement of thermal catalysis. Our findings show that the establishment of a nano-heterojunction formed by metal NPs on a semiconductor support has a significant impact on thermal catalysis, where a narrower band gap can facilitate thermally excited carriers and thus bring about better catalytic performances. Thus, the results presented here shed light on the design of a nano-heterojunction catalyst to approach reactions with superior performance under moderate conditions.

摘要

通过水热法合成了具有不同带隙的钠(Na)和钾(K)掺杂的δ-MnO₂。然后,将均匀的金纳米颗粒(NPs)沉积在MnO₂上,形成金属-半导体纳米异质结(MnO₂-Au)。通过比较它们随温度变化的热催化性能,以对氨基苯硫酚到对,对'-二巯基偶氮苯的转化作为概念验证转化。MnO₂-Au杂化材料相对于单个Au NPs表现出更好的热催化性能。同时,具有较窄带隙的MnO₂载体的K掺杂MnO₂-Au相对于Na掺杂的MnO₂-Au表现出优异的催化活性。要通过单个Au NPs获得相同的催化性能,Na掺杂的MnO₂-Au的温度可低约50 K,K掺杂的MnO₂-Au的温度可低约100 K。这种增强主要归因于MnO₂中热激发的电子,这些电子转移到了Au NPs上。Au NPs中的额外电子增加了电子密度,从而有助于热催化的改善。我们的研究结果表明,在半导体载体上由金属NPs形成的纳米异质结的建立对热催化有重大影响,其中较窄的带隙可以促进热激发载流子,从而带来更好的催化性能。因此,本文的结果为设计纳米异质结催化剂以在温和条件下实现具有优异性能的反应提供了思路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验