University of Wisconsin-Madison, USA.
Hum Factors. 2019 Dec;61(8):1326-1339. doi: 10.1177/0018720819838901. Epub 2019 Apr 23.
This study explores how common machine learning techniques can predict surgical maneuvers from a continuous video record of surgical benchtop simulations.
Automatic computer vision recognition of surgical maneuvers (suturing, tying, and transition) could expedite video review and objective assessment of surgeries.
We recorded hand movements of 37 clinicians performing simple and running subcuticular suturing benchtop simulations, and applied three machine learning techniques (decision trees, random forests, and hidden Markov models) to classify surgical maneuvers every 2 s (60 frames) of video.
Random forest predictions of surgical video correctly classified 74% of all video segments into suturing, tying, and transition states for a randomly selected test set. Hidden Markov model adjustments improved the random forest predictions to 79% for simple interrupted suturing on a subset of randomly selected participants.
Random forest predictions aided by hidden Markov modeling provided the best prediction of surgical maneuvers. Training of models across all users improved prediction accuracy by 10% compared with a random selection of participants.
Marker-less video hand tracking can predict surgical maneuvers from a continuous video record with similar accuracy as robot-assisted surgical platforms, and may enable more efficient video review of surgical procedures for training and coaching.
本研究探讨了常见的机器学习技术如何从手术台模拟的连续视频记录中预测手术操作。
自动计算机视觉识别手术操作(缝合、打结和转换)可以加快视频审查和手术的客观评估。
我们记录了 37 名临床医生在进行简单和连续皮下缝合台模拟时的手部动作,并应用了三种机器学习技术(决策树、随机森林和隐马尔可夫模型),每 2 秒(60 帧)对视频进行分类手术操作。
随机森林对手术视频的预测正确地将所有视频片段分类为缝合、打结和转换状态,对于随机选择的测试集,这一比例为 74%。隐马尔可夫模型调整将随机森林对简单间断缝合的预测提高到 79%,适用于随机选择的参与者子集。
通过隐马尔可夫模型辅助的随机森林预测提供了手术操作的最佳预测。与随机选择参与者相比,对所有用户进行模型训练可将预测准确性提高 10%。
无标记视频手部跟踪可以从连续的视频记录中以类似于机器人辅助手术平台的准确性预测手术操作,并且可能使手术程序的视频审查更加高效,从而实现培训和指导。