Suppr超能文献

基于视频和加速度计的运动分析用于自动化手术技能评估。

Video and accelerometer-based motion analysis for automated surgical skills assessment.

机构信息

College of Computing, Georgia Tech, Atlanta, Georgia.

Department of Surgery, Emory University, Atlanta, Georgia.

出版信息

Int J Comput Assist Radiol Surg. 2018 Mar;13(3):443-455. doi: 10.1007/s11548-018-1704-z. Epub 2018 Jan 29.

Abstract

PURPOSE

Basic surgical skills of suturing and knot tying are an essential part of medical training. Having an automated system for surgical skills assessment could help save experts time and improve training efficiency. There have been some recent attempts at automated surgical skills assessment using either video analysis or acceleration data. In this paper, we present a novel approach for automated assessment of OSATS-like surgical skills and provide an analysis of different features on multi-modal data (video and accelerometer data).

METHODS

We conduct a large study for basic surgical skill assessment on a dataset that contained video and accelerometer data for suturing and knot-tying tasks. We introduce "entropy-based" features-approximate entropy and cross-approximate entropy, which quantify the amount of predictability and regularity of fluctuations in time series data. The proposed features are compared to existing methods of Sequential Motion Texture, Discrete Cosine Transform and Discrete Fourier Transform, for surgical skills assessment.

RESULTS

We report average performance of different features across all applicable OSATS-like criteria for suturing and knot-tying tasks. Our analysis shows that the proposed entropy-based features outperform previous state-of-the-art methods using video data, achieving average classification accuracies of 95.1 and 92.2% for suturing and knot tying, respectively. For accelerometer data, our method performs better for suturing achieving 86.8% average accuracy. We also show that fusion of video and acceleration features can improve overall performance for skill assessment.

CONCLUSION

Automated surgical skills assessment can be achieved with high accuracy using the proposed entropy features. Such a system can significantly improve the efficiency of surgical training in medical schools and teaching hospitals.

摘要

目的

缝合和打结等基本手术技能是医学培训的重要组成部分。拥有自动化的手术技能评估系统可以帮助专家节省时间并提高培训效率。最近已经有一些使用视频分析或加速度数据的自动化手术技能评估的尝试。在本文中,我们提出了一种用于评估 OSATS 式手术技能的新方法,并对多模态数据(视频和加速度计数据)的不同特征进行了分析。

方法

我们在一个包含缝合和打结任务的视频和加速度计数据的数据集上进行了一项大型基本手术技能评估研究。我们引入了“基于熵”的特征——近似熵和交叉近似熵,这些特征量化了时间序列数据中波动的可预测性和规律性。与现有的用于手术技能评估的顺序运动纹理、离散余弦变换和离散傅里叶变换方法相比,提出了这些特征。

结果

我们报告了适用于缝合和打结任务的所有 OSATS 式标准的不同特征的平均性能。我们的分析表明,基于熵的特征优于使用视频数据的先前最先进方法,分别实现了 95.1%和 92.2%的平均分类精度。对于加速度计数据,我们的方法在缝合方面表现更好,平均准确率为 86.8%。我们还表明,融合视频和加速度特征可以提高技能评估的整体性能。

结论

使用提出的熵特征可以实现高精度的自动化手术技能评估。这样的系统可以大大提高医学院和教学医院的手术培训效率。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验