Suppr超能文献

一种用于室内移动机器人的增强型混合视觉惯性里程计系统。

An Enhanced Hybrid Visual-Inertial Odometry System for Indoor Mobile Robot.

作者信息

Liu Yanjie, Zhao Changsen, Ren Meixuan

机构信息

State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.

出版信息

Sensors (Basel). 2022 Apr 11;22(8):2930. doi: 10.3390/s22082930.

Abstract

As mobile robots are being widely used, accurate localization of the robot counts for the system. Compared with position systems with a single sensor, multi-sensor fusion systems provide better performance and increase the accuracy and robustness. At present, camera and IMU (Inertial Measurement Unit) fusion positioning is extensively studied and many representative Visual-Inertial Odometry (VIO) systems have been produced. Multi-State Constraint Kalman Filter (MSCKF), one of the tightly coupled filtering methods, is characterized by high accuracy and low computational load among typical VIO methods. In the general framework, IMU information is not used after predicting the state and covariance propagation. In this article, we proposed a framework which introduce IMU pre-integration result into MSCKF framework as observation information to improve the system positioning accuracy. Additionally, the system uses the Helmert variance component estimation (HVCE) method to adjust the weight between feature points and pre-integration to further improve the positioning accuracy. Similarly, this article uses the wheel odometer information of the mobile robot to perform zero speed detection, zero-speed update, and pre-integration update to enhance the positioning accuracy of the system. Finally, after experiments carried out in Gazebo simulation environment, public dataset and real scenarios, it is proved that the proposed algorithm has better accuracy results while ensuring real-time performance than existing mainstream algorithms.

摘要

随着移动机器人的广泛应用,机器人的精确定位对系统至关重要。与单传感器定位系统相比,多传感器融合系统具有更好的性能,能提高准确性和鲁棒性。目前,相机与惯性测量单元(IMU)融合定位受到广泛研究,许多具有代表性的视觉惯性里程计(VIO)系统也已问世。多状态约束卡尔曼滤波器(MSCKF)作为紧密耦合滤波方法之一,在典型的VIO方法中具有高精度和低计算量的特点。在一般框架中,预测状态和协方差传播后不再使用IMU信息。在本文中,我们提出了一个框架,将IMU预积分结果作为观测信息引入MSCKF框架,以提高系统定位精度。此外,该系统使用赫尔默特方差分量估计(HVCE)方法来调整特征点与预积分之间的权重,进一步提高定位精度。同样,本文利用移动机器人的轮式里程计信息进行零速检测、零速更新和预积分更新,以提高系统的定位精度。最后,在Gazebo仿真环境、公开数据集和真实场景中进行实验后,证明所提算法在确保实时性的同时,比现有主流算法具有更好的精度结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/71bc/9024916/dfa0b7fc2c25/sensors-22-02930-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验