John van Geest Cancer Research Centre, College of Science and Technology, Nottingham Trent University, Nottingham, United Kingdom.
Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia and University of Pennsylvania School of Medicine; Philadelphia, PA; and.
Blood Adv. 2019 Apr 23;3(8):1330-1346. doi: 10.1182/bloodadvances.2018030726.
Acute myeloid leukemia (AML) is a genetically heterogeneous hematological malignancy with variable responses to chemotherapy. Although recurring cytogenetic abnormalities and gene mutations are important predictors of outcome, 50% to 70% of AMLs harbor normal or risk-indeterminate karyotypes. Therefore, identifying more effective biomarkers predictive of treatment success and failure is essential for informing tailored therapeutic decisions. We applied an artificial neural network (ANN)-based machine learning approach to a publicly available data set for a discovery cohort of 593 adults with nonpromyelocytic AML. ANN analysis identified a parsimonious 3-gene expression signature comprising , , and , which was predictive of event-free survival (EFS) and overall survival (OS). We computed a prognostic index (PI) using normalized gene-expression levels and β-values from subsequently created Cox proportional hazards models, coupled with clinically established prognosticators. Our 3-gene PI separated the adult patients in each European LeukemiaNet cytogenetic risk category into subgroups with different survival probabilities and identified patients with very high-risk features, such as those with a high PI and either internal tandem duplication or nonmutated nucleophosmin 1. The PI remained significantly associated with poor EFS and OS after adjusting for established prognosticators, and its ability to stratify survival was validated in 3 independent adult cohorts (n = 905 subjects) and 1 cohort of childhood AML (n = 145 subjects). Further in silico analyses established that AML was the only tumor type among 39 distinct malignancies for which the concomitant upregulation of , , and predicted survival. Therefore, our ANN-derived 3-gene signature refines the accuracy of patient stratification and the potential to significantly improve outcome prediction.
急性髓系白血病(AML)是一种遗传异质性血液恶性肿瘤,对化疗的反应各不相同。虽然反复出现的细胞遗传学异常和基因突变是预后的重要预测因素,但 50%至 70%的 AML 具有正常或风险不确定的核型。因此,确定更有效的生物标志物来预测治疗的成功和失败对于制定个性化的治疗决策至关重要。我们应用基于人工神经网络(ANN)的机器学习方法对一个公开的 593 例非早幼粒细胞性 AML 成人患者的发现队列数据进行了分析。ANN 分析确定了一个简洁的 3 个基因表达特征,包括、和,该特征可预测无事件生存(EFS)和总生存(OS)。我们使用随后创建的 Cox 比例风险模型中的归一化基因表达水平和β值计算了一个预后指数(PI),并结合临床确立的预后因素。我们的 3 个基因 PI 将每个欧洲白血病网络细胞遗传学风险类别的成年患者分为具有不同生存概率的亚组,并确定了具有极高风险特征的患者,例如那些 PI 较高且存在内部串联重复或未突变核磷蛋白 1 的患者。在调整了既定预后因素后,PI 与不良 EFS 和 OS 仍然显著相关,并且在 3 个独立的成年队列(n=905 例)和 1 个儿童 AML 队列(n=145 例)中验证了其分层生存的能力。进一步的计算机模拟分析表明,在 39 种不同的恶性肿瘤中,AML 是唯一一种同时上调、和的肿瘤类型,可预测生存。因此,我们的 ANN 衍生的 3 个基因特征提高了患者分层的准确性,有可能显著改善预后预测。