Gerstung Moritz, Papaemmanuil Elli, Martincorena Inigo, Bullinger Lars, Gaidzik Verena I, Paschka Peter, Heuser Michael, Thol Felicitas, Bolli Niccolo, Ganly Peter, Ganser Arnold, McDermott Ultan, Döhner Konstanze, Schlenk Richard F, Döhner Hartmut, Campbell Peter J
Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK.
European Bioinformatics Institute EMBL-EBI, Hinxton, UK.
Nat Genet. 2017 Mar;49(3):332-340. doi: 10.1038/ng.3756. Epub 2017 Jan 16.
Underpinning the vision of precision medicine is the concept that causative mutations in a patient's cancer drive its biology and, by extension, its clinical features and treatment response. However, considerable between-patient heterogeneity in driver mutations complicates evidence-based personalization of cancer care. Here, by reanalyzing data from 1,540 patients with acute myeloid leukemia (AML), we explore how large knowledge banks of matched genomic-clinical data can support clinical decision-making. Inclusive, multistage statistical models accurately predicted likelihoods of remission, relapse and mortality, which were validated using data from independent patients in The Cancer Genome Atlas. Comparison of long-term survival probabilities under different treatments enables therapeutic decision support, which is available in exploratory form online. Personally tailored management decisions could reduce the number of hematopoietic cell transplants in patients with AML by 20-25% while maintaining overall survival rates. Power calculations show that databases require information from thousands of patients for accurate decision support. Knowledge banks facilitate personally tailored therapeutic decisions but require sustainable updating, inclusive cohorts and large sample sizes.
患者癌症中的致病突变驱动其生物学行为,进而影响其临床特征和治疗反应。然而,驱动突变在患者之间存在相当大的异质性,这使得基于证据的癌症个性化治疗变得复杂。在此,通过重新分析1540例急性髓系白血病(AML)患者的数据,我们探讨了匹配的基因组-临床数据大知识库如何支持临床决策。包容性的多阶段统计模型准确预测了缓解、复发和死亡的可能性,并使用来自癌症基因组图谱中独立患者的数据进行了验证。不同治疗方案下长期生存概率的比较可提供治疗决策支持,该支持以探索性形式在线提供。个性化定制的管理决策可使AML患者的造血细胞移植数量减少20%-25%,同时维持总体生存率。功效计算表明,数据库需要数千名患者的信息才能提供准确的决策支持。知识库有助于做出个性化定制的治疗决策,但需要持续更新、包容性队列和大样本量。