Suppr超能文献

贝塔二项式模型分析 CRISPR 池筛选数据可提高检测灵敏度并减少假阴性。

Beta-binomial modeling of CRISPR pooled screen data identifies target genes with greater sensitivity and fewer false negatives.

机构信息

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.

Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, Texas 77030, USA.

出版信息

Genome Res. 2019 Jun;29(6):999-1008. doi: 10.1101/gr.245571.118. Epub 2019 Apr 23.

Abstract

The simplicity and cost-effectiveness of CRISPR technology have made high-throughput pooled screening approaches accessible to virtually any laboratory. Analyzing the large sequencing data derived from these studies, however, still demands considerable bioinformatics expertise. Various methods have been developed to lessen this requirement, but there are still three tasks for accurate CRISPR screen analysis that involve bioinformatic know-how, if not prowess: designing a proper statistical hypothesis test for robust target identification, developing an accurate mapping algorithm to quantify sgRNA levels, and minimizing the parameters that need to be fine-tuned. To make CRISPR screen analysis more reliable as well as more readily accessible, we have developed a new algorithm, called CRISPRBetaBinomial or CB Based on the beta-binomial distribution, which is better suited to sgRNA data, CB outperforms the eight most commonly used methods (HiTSelect, MAGeCK, PBNPA, PinAPL-Py, RIGER, RSA, ScreenBEAM, and sgRSEA) in both accurately quantifying sgRNAs and identifying target genes, with greater sensitivity and a much lower false discovery rate. It also accommodates staggered sgRNA sequences. In conjunction with CRISPRcloud, CB brings CRISPR screen analysis within reach for a wider community of researchers.

摘要

CRISPR 技术的简单性和成本效益使得高通量的 pooled 筛选方法几乎可以应用于任何实验室。然而,分析这些研究中产生的大量测序数据仍然需要相当多的生物信息学专业知识。已经开发了各种方法来降低这种需求,但仍然有三个任务需要生物信息学知识才能准确进行 CRISPR 筛选分析,即使不是专业知识:为稳健的靶标识别设计适当的统计假设检验,开发准确的映射算法来量化 sgRNA 水平,以及最小化需要调整的参数。为了使 CRISPR 筛选分析更加可靠且易于使用,我们开发了一种新的算法,称为 CRISPRBetaBinomial 或 CB,它基于 beta-binomial 分布,更适合 sgRNA 数据。在准确量化 sgRNA 和识别靶基因方面,CB 优于最常用的八种方法(HiTSelect、MAGeCK、PBNPA、PinAPL-Py、RIGER、RSA、ScreenBEAM 和 sgRSEA),具有更高的灵敏度和更低的假发现率。它还可以适应交错的 sgRNA 序列。与 CRISPRcloud 结合使用,CB 使得更广泛的研究人员能够进行 CRISPR 筛选分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cbe/6581060/1940a26c5da9/999f01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验