Suppr超能文献

CRISPR/Cas 基因组编辑的计算工具和资源。

Computational Tools and Resources for CRISPR/Cas Genome Editing.

机构信息

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China.

Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory for Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China.

出版信息

Genomics Proteomics Bioinformatics. 2023 Feb;21(1):108-126. doi: 10.1016/j.gpb.2022.02.006. Epub 2022 Mar 24.

Abstract

The past decade has witnessed a rapid evolution in identifying more versatile clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) nucleases and their functional variants, as well as in developing precise CRISPR/Cas-derived genome editors. The programmable and robust features of the genome editors provide an effective RNA-guided platform for fundamental life science research and subsequent applications in diverse scenarios, including biomedical innovation and targeted crop improvement. One of the most essential principles is to guide alterations in genomic sequences or genes in the intended manner without undesired off-target impacts, which strongly depends on the efficiency and specificity of single guide RNA (sgRNA)-directed recognition of targeted DNA sequences. Recent advances in empirical scoring algorithms and machine learning models have facilitated sgRNA design and off-target prediction. In this review, we first briefly introduce the different features of CRISPR/Cas tools that should be taken into consideration to achieve specific purposes. Secondly, we focus on the computer-assisted tools and resources that are widely used in designing sgRNAs and analyzing CRISPR/Cas-induced on- and off-target mutations. Thirdly, we provide insights into the limitations of available computational tools that would help researchers of this field for further optimization. Lastly, we suggest a simple but effective workflow for choosing and applying web-based resources and tools for CRISPR/Cas genome editing.

摘要

过去十年见证了识别更多多功能的成簇规律间隔短回文重复(CRISPR)/CRISPR 相关蛋白(Cas)核酸酶及其功能变体的快速发展,以及开发精确的 CRISPR/Cas 衍生基因组编辑工具的快速发展。基因组编辑工具的可编程和强大功能为基础生命科学研究及其随后在包括生物医学创新和靶向作物改良在内的各种场景中的应用提供了有效的 RNA 引导平台。其中一个最基本的原则是指导基因组序列或基因以预期的方式发生改变,而不会产生不必要的脱靶影响,这强烈依赖于单指导 RNA(sgRNA)引导的靶向 DNA 序列的识别效率和特异性。经验评分算法和机器学习模型的最新进展促进了 sgRNA 的设计和脱靶预测。在这篇综述中,我们首先简要介绍了 CRISPR/Cas 工具的不同特征,这些特征需要考虑以实现特定目的。其次,我们重点介绍了广泛用于设计 sgRNA 和分析 CRISPR/Cas 诱导的靶上和靶外突变的计算机辅助工具和资源。第三,我们深入了解了现有计算工具的局限性,这将有助于该领域的研究人员进一步优化。最后,我们提出了一个简单但有效的工作流程,用于选择和应用基于网络的资源和工具进行 CRISPR/Cas 基因组编辑。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/69fe/10372911/a34ff9936630/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验