Baumberg Jeremy J
NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, University of Cambridge, JJ Thompson Avenue, Cambridge, CB3 0HE, UK.
Faraday Discuss. 2019 May 1;214:501-511. doi: 10.1039/c9fd00027e. Epub 2019 Apr 24.
Hot electron photochemistry has made strong claims for improved control of chemical reactions. Here I discuss these claims in the light of a plethora of model experiments and theories, asking what are the key issues to solve. I particularly highlight the need to understand nanoscale thermal hot-spots, thermal gradients, and thermal transport, as well as the conventional optical confinement in plasmonics. I note how the 'direct electron transfer' process seems to dominate, and resembles well known 'indirect excitons' in semiconductor quantum wells. I believe a crucial advance still required is a prototype nano-confined geometry which allows reactants and products to access a well-controlled metallic atomic surface.
热电子光化学在化学反应的改进控制方面提出了有力的主张。在此,我根据大量的模型实验和理论来讨论这些主张,探讨需要解决的关键问题是什么。我特别强调了理解纳米级热热点、热梯度和热传输的必要性,以及等离子体激元学中传统的光学限制。我指出“直接电子转移”过程似乎占主导地位,并且类似于半导体量子阱中众所周知的“间接激子”。我认为仍然需要的一个关键进展是一种原型纳米受限几何结构,它能让反应物和产物接触到一个可控的金属原子表面。