Hartelt Michael, Terekhin Pavel N, Eul Tobias, Mahro Anna-Katharina, Frisch Benjamin, Prinz Eva, Rethfeld Baerbel, Stadtmüller Benjamin, Aeschlimann Martin
Department of Physics and Research Center OPTIMAS,TU Kaiserslautern, Erwin-Schrödinger-Straße 46, 67663 Kaiserslautern, Germany.
Institute of Physics, Johannes Gutenberg University Mainz, Staudingerweg 7, 55128 Mainz, Germany.
ACS Nano. 2021 Dec 28;15(12):19559-19569. doi: 10.1021/acsnano.1c06586. Epub 2021 Dec 1.
Understanding the differences between photon-induced and plasmon-induced hot electrons is essential for the construction of devices for plasmonic energy conversion. The mechanism of the plasmonic enhancement in photochemistry, photocatalysis, and light-harvesting and especially the role of hot carriers is still heavily discussed. The question remains, if plasmon-induced and photon-induced hot carriers are fundamentally different or if plasmonic enhancement is only an effect of field concentration producing these carriers in greater numbers. For the bulk plasmon resonance, a fundamental difference is known, yet for the technologically important surface plasmons, this is far from being settled. The direct imaging of surface plasmon-induced hot carriers could provide essential insight, but the separation of the influence of driving laser, field-enhancement, and fundamental plasmon decay has proven to be difficult. Here, we present an approach using a two-color femtosecond pump-probe scheme in time-resolved 2-photon-photoemission (tr-2PPE), supported by a theoretical analysis of the light and plasmon energy flow. We separate the energy and momentum distribution of the plasmon-induced hot electrons from that of photoexcited electrons by following the spatial evolution of photoemitted electrons with energy-resolved photoemission electron microscopy (PEEM) and momentum microscopy during the propagation of a surface plasmon polariton (SPP) pulse along a gold surface. With this scheme, we realize a direct experimental access to plasmon-induced hot electrons. We find a plasmonic enhancement toward high excitation energies and small in-plane momenta, which suggests a fundamentally different mechanism of hot electron generation, as previously unknown for surface plasmons.
了解光子诱导热电子和等离子体激元诱导热电子之间的差异对于构建用于等离子体能量转换的器件至关重要。光化学、光催化和光捕获中等离子体激元增强的机制,尤其是热载流子的作用,仍在被大量讨论。问题仍然存在,即等离子体激元诱导的热载流子和光子诱导的热载流子在本质上是否不同,或者等离子体激元增强是否仅仅是场集中导致这些载流子数量增加的一种效应。对于体等离子体激元共振,其基本差异是已知的,但对于技术上重要的表面等离子体激元,这一问题远未解决。表面等离子体激元诱导热载流子的直接成像可以提供重要的见解,但事实证明,区分驱动激光、场增强和基本等离子体激元衰减的影响很困难。在这里,我们提出一种方法,使用双色飞秒泵浦 - 探测方案进行时间分辨双光子光发射(tr - 2PPE),并辅以光和等离子体激元能流的理论分析。我们通过在表面等离子体激元极化激元(SPP)脉冲沿金表面传播过程中,利用能量分辨光发射电子显微镜(PEEM)和动量显微镜跟踪光发射电子的空间演化,将等离子体激元诱导热电子的能量和动量分布与光激发电子的能量和动量分布区分开来。通过这种方案,我们实现了对等离子体激元诱导热电子的直接实验观测。我们发现等离子体激元对高激发能量和小面内动量有增强作用,这表明热电子产生的机制在本质上是不同的,这是表面等离子体激元以前未知的。