Suppr超能文献

通过 MixMD 共溶剂模拟确定结合位点的自由能和熵。

Free Energies and Entropies of Binding Sites Identified by MixMD Cosolvent Simulations.

机构信息

Department of Medicinal Chemistry, College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109-1065 , United States.

出版信息

J Chem Inf Model. 2019 May 28;59(5):2035-2045. doi: 10.1021/acs.jcim.8b00925. Epub 2019 May 2.

Abstract

In our recent efforts to map protein surfaces using mixed-solvent molecular dynamics (MixMD) (Ghanakota, P.; Carlson, H. A. Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems. J. Phys. Chem. B 2016, 120, 8685-8695), we were able to successfully capture active sites and allosteric sites within the top-four most occupied hotspots. In this study, we describe our approach for estimating the thermodynamic profile of the binding sites identified by MixMD. First, we establish a framework for calculating free energies from MixMD simulations, and we compare our approach to alternative methods. Second, we present a means to obtain a relative ranking of the binding sites by their configurational entropy. The theoretical maximum and minimum free energy and entropy values achievable under such a framework along with the limitations of the techniques are discussed. Using this approach, the free energy and relative entropy ranking of the top-four MixMD binding sites were computed and analyzed across our allosteric protein targets: Abl Kinase, Androgen Receptor, Pdk1 Kinase, Farnesyl Pyrophosphate Synthase, Chk1 Kinase, Glucokinase, and Protein Tyrosine Phosphatase 1B.

摘要

在我们最近使用混合溶剂分子动力学 (MixMD) 绘制蛋白质表面图的努力中(Ghanakota,P.;Carlson,H. A.超越活性位点检测:MixMD 应用于变构系统。J. Phys. Chem. B 2016,120,8685-8695),我们成功地捕获了前四个最常占据的热点中的活性位点和变构位点。在这项研究中,我们描述了我们用于估计 MixMD 识别的结合位点热力学分布的方法。首先,我们建立了一种从 MixMD 模拟计算自由能的框架,并比较了我们的方法与替代方法。其次,我们提出了一种通过构象熵对结合位点进行相对排序的方法。讨论了在这种框架下,理论上最大和最小自由能以及熵值的可达性以及技术的局限性。使用这种方法,我们计算并分析了前四个 MixMD 结合位点在我们的变构蛋白靶标中的自由能和相对熵排序:Abl 激酶、雄激素受体、Pdk1 激酶、法呢基焦磷酸合酶、Chk1 激酶、葡萄糖激酶和蛋白酪氨酸磷酸酶 1B。

相似文献

1
Free Energies and Entropies of Binding Sites Identified by MixMD Cosolvent Simulations.
J Chem Inf Model. 2019 May 28;59(5):2035-2045. doi: 10.1021/acs.jcim.8b00925. Epub 2019 May 2.
2
Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems.
J Phys Chem B. 2016 Aug 25;120(33):8685-95. doi: 10.1021/acs.jpcb.6b03515. Epub 2016 Jun 17.
3
MixMD Probeview: Robust Binding Site Prediction from Cosolvent Simulations.
J Chem Inf Model. 2018 Jul 23;58(7):1426-1433. doi: 10.1021/acs.jcim.8b00265. Epub 2018 Jun 26.
4
Identification of Cryptic Binding Sites Using MixMD with Standard and Accelerated Molecular Dynamics.
J Chem Inf Model. 2021 Mar 22;61(3):1287-1299. doi: 10.1021/acs.jcim.0c01002. Epub 2021 Feb 18.
5
Predicting Displaceable Water Sites Using Mixed-Solvent Molecular Dynamics.
J Chem Inf Model. 2018 Feb 26;58(2):305-314. doi: 10.1021/acs.jcim.7b00268. Epub 2018 Jan 16.
6
Cosolvent Simulations with Fragment-Bound Proteins Identify Hot Spots to Direct Lead Growth.
J Chem Theory Comput. 2022 Jun 14;18(6):3829-3844. doi: 10.1021/acs.jctc.1c01054. Epub 2022 May 9.
7
Identifying Potential Ligand Binding Sites on Glycogen Synthase Kinase 3 Using Atomistic Cosolvent Simulations.
ACS Appl Bio Mater. 2024 Feb 19;7(2):588-595. doi: 10.1021/acsabm.2c01079. Epub 2023 May 4.
8
Unraveling the Ligand-Binding Sites of CYP3A4 by Molecular Dynamics Simulations with Solvent Probes.
J Chem Inf Model. 2024 Apr 22;64(8):3451-3464. doi: 10.1021/acs.jcim.4c00089. Epub 2024 Apr 9.
9
Parameter choice matters: validating probe parameters for use in mixed-solvent simulations.
J Chem Inf Model. 2014 Aug 25;54(8):2190-9. doi: 10.1021/ci400741u. Epub 2014 Aug 1.

引用本文的文献

1
Enhancing SILCS-MC via GPU Acceleration and Ligand Conformational Optimization with Genetic and Parallel Tempering Algorithms.
J Phys Chem B. 2024 Aug 1;128(30):7362-7375. doi: 10.1021/acs.jpcb.4c03045. Epub 2024 Jul 20.
2
AAp-MSMD: Amino Acid Preference Mapping on Protein-Protein Interaction Surfaces Using Mixed-Solvent Molecular Dynamics.
J Chem Inf Model. 2023 Dec 25;63(24):7768-7777. doi: 10.1021/acs.jcim.3c01677. Epub 2023 Dec 12.
3
Concentration-dependent thermodynamic analysis of the partition process of small ligands into proteins.
Comput Struct Biotechnol J. 2022 Sep 1;20:4885-4891. doi: 10.1016/j.csbj.2022.08.049. eCollection 2022.
5
Cosolvent Simulations with Fragment-Bound Proteins Identify Hot Spots to Direct Lead Growth.
J Chem Theory Comput. 2022 Jun 14;18(6):3829-3844. doi: 10.1021/acs.jctc.1c01054. Epub 2022 May 9.
6
Application of Site-Identification by Ligand Competitive Saturation in Computer-Aided Drug Design.
New J Chem. 2022 Jan 21;46(3):919-932. doi: 10.1039/d1nj04028f. Epub 2021 Nov 29.
7
Computational Identification of Possible Allosteric Sites and Modulators of the SARS-CoV-2 Main Protease.
J Chem Inf Model. 2022 Feb 14;62(3):618-626. doi: 10.1021/acs.jcim.1c01223. Epub 2022 Feb 2.
8
Analyzing the Relationship Between the Activation of the Edema Factor and Its Interaction With Calmodulin.
Front Mol Biosci. 2020 Dec 4;7:586544. doi: 10.3389/fmolb.2020.586544. eCollection 2020.
9
Essential site scanning analysis: A new approach for detecting sites that modulate the dispersion of protein global motions.
Comput Struct Biotechnol J. 2020 Jun 18;18:1577-1586. doi: 10.1016/j.csbj.2020.06.020. eCollection 2020.
10
Impact of electronic polarizability on protein-functional group interactions.
Phys Chem Chem Phys. 2020 Apr 6;22(13):6848-6860. doi: 10.1039/d0cp00088d.

本文引用的文献

1
Understanding Cryptic Pocket Formation in Protein Targets by Enhanced Sampling Simulations.
J Am Chem Soc. 2016 Nov 2;138(43):14257-14263. doi: 10.1021/jacs.6b05425. Epub 2016 Oct 20.
2
Driving Structure-Based Drug Discovery through Cosolvent Molecular Dynamics.
J Med Chem. 2016 Dec 8;59(23):10383-10399. doi: 10.1021/acs.jmedchem.6b00399. Epub 2016 Aug 17.
3
Twenty years on: the impact of fragments on drug discovery.
Nat Rev Drug Discov. 2016 Sep;15(9):605-619. doi: 10.1038/nrd.2016.109. Epub 2016 Jul 15.
4
Moving Beyond Active-Site Detection: MixMD Applied to Allosteric Systems.
J Phys Chem B. 2016 Aug 25;120(33):8685-95. doi: 10.1021/acs.jpcb.6b03515. Epub 2016 Jun 17.
5
PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data.
J Chem Theory Comput. 2013 Jul 9;9(7):3084-95. doi: 10.1021/ct400341p. Epub 2013 Jun 25.
6
Relationship between Protein Flexibility and Binding: Lessons for Structure-Based Drug Design.
J Chem Theory Comput. 2014 Jun 10;10(6):2608-14. doi: 10.1021/ct500182z. Epub 2014 May 30.
9
Spatial analysis and quantification of the thermodynamic driving forces in protein-ligand binding: binding site variability.
J Am Chem Soc. 2015 Feb 25;137(7):2608-21. doi: 10.1021/ja512054f. Epub 2015 Feb 16.
10
Applying thermodynamic profiling in lead finding and optimization.
Nat Rev Drug Discov. 2015 Feb;14(2):95-110. doi: 10.1038/nrd4486. Epub 2015 Jan 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验