Suppr超能文献

小配体进入蛋白质分配过程的浓度依赖性热力学分析

Concentration-dependent thermodynamic analysis of the partition process of small ligands into proteins.

作者信息

Cirqueira Leonardo, Stock Letícia, Treptow Werner

机构信息

Laboratório de Biologia Teórica e Computacional (LBTC), Universidade de Brasília, DF CEP 70904-970, Brazil.

出版信息

Comput Struct Biotechnol J. 2022 Sep 1;20:4885-4891. doi: 10.1016/j.csbj.2022.08.049. eCollection 2022.

Abstract

In the category of functional low-affinity interactions, small ligands may interact with multiple protein sites in a highly degenerate manner. Better conceived as a partition phenomenon at the molecular interface of proteins, such low-affinity interactions appear to be hidden to our current experimental resolution making their structural and functional characterization difficult in the low concentration regime of physiological processes. Characterization of the partition phenomenon under higher chemical forces could be a relevant strategy to tackle the problem provided the results can be scaled back to the low concentration range. Far from being trivial, such scaling demands a concentration-dependent understanding of self-interactions of the ligands, structural perturbations of the protein, among other molecular effects. Accordingly, we elaborate a novel and detailed concentration-dependent thermodynamic analysis of the partition process of small ligands aiming at characterizing the stability and structure of the dilute phenomenon from high concentrations. In analogy to an "aggregate" binding constant of a small molecule over multiple sites of a protein receptor, the model defines the stability of the process as a macroscopic equilibrium constant for the partition number of ligands that can be used to analyze biochemical and functional data of two-component systems driven by low-affinity interactions. Acquisition of such modeling-based structural information is expected to be highly welcome by revealing more traceable protein-binding spots for non-specific ligands.

摘要

在功能性低亲和力相互作用类别中,小分子配体可能以高度简并的方式与多个蛋白质位点相互作用。这类低亲和力相互作用更宜被视为蛋白质分子界面处的一种分配现象,在我们当前的实验分辨率下似乎难以察觉,这使得在生理过程的低浓度范围内对其进行结构和功能表征变得困难。如果能够将结果外推至低浓度范围,那么在更高化学力下对分配现象进行表征可能是解决该问题的一种有效策略。这种外推绝非易事,它需要对配体的自相互作用、蛋白质的结构扰动以及其他分子效应有浓度依赖性的理解。因此,我们针对小分子配体的分配过程展开了一种新颖且详细的浓度依赖性热力学分析,旨在从高浓度情况表征稀释现象的稳定性和结构。类似于小分子在蛋白质受体多个位点上的“聚集”结合常数,该模型将该过程的稳定性定义为配体分配数的宏观平衡常数,可用于分析由低亲和力相互作用驱动的双组分系统的生化和功能数据。通过揭示更多非特异性配体的可追踪蛋白质结合位点,预计这种基于建模的结构信息将备受欢迎。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7cb9/9468351/72d0d1205f5e/ga1.jpg

相似文献

1
Concentration-dependent thermodynamic analysis of the partition process of small ligands into proteins.
Comput Struct Biotechnol J. 2022 Sep 1;20:4885-4891. doi: 10.1016/j.csbj.2022.08.049. eCollection 2022.
2
Allosteric Modulation of Membrane Proteins by Small Low-Affinity Ligands.
J Chem Inf Model. 2023 Apr 10;63(7):2047-2057. doi: 10.1021/acs.jcim.2c01542. Epub 2023 Mar 18.
3
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
4
Hydrophobic Hydration Processes: Intensity Entropy and Null Thermal Free Energy and Density Entropy and Motive Free Energy.
ACS Omega. 2019 Nov 11;4(22):19526-19547. doi: 10.1021/acsomega.9b01440. eCollection 2019 Nov 26.
6
Structural stability of binding sites: consequences for binding affinity and allosteric effects.
Proteins. 2000;Suppl 4:63-71. doi: 10.1002/1097-0134(2000)41:4+<63::aid-prot60>3.3.co;2-y.
8
9
Systematic derivation of partition functions for ligand binding to two-dimensional lattices.
Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):12953-8. doi: 10.1073/pnas.93.23.12953.

本文引用的文献

1
On the role of phase separation in the biogenesis of membraneless compartments.
EMBO J. 2022 Mar 1;41(5):e109952. doi: 10.15252/embj.2021109952. Epub 2022 Feb 2.
2
Advances in Proteasome Enhancement by Small Molecules.
Biomolecules. 2021 Nov 30;11(12):1789. doi: 10.3390/biom11121789.
3
High-Throughput Mass Spectrometry for Hit Identification: Current Landscape and Future Perspectives.
SLAS Discov. 2021 Feb;26(2):168-191. doi: 10.1177/2472555220980696.
4
Free Energies and Entropies of Binding Sites Identified by MixMD Cosolvent Simulations.
J Chem Inf Model. 2019 May 28;59(5):2035-2045. doi: 10.1021/acs.jcim.8b00925. Epub 2019 May 2.
5
Atomistic Model for Simulations of the Sedative Hypnotic Drug 2,2,2-Trichloroethanol.
ACS Omega. 2018 Nov 30;3(11):15916-15923. doi: 10.1021/acsomega.8b02017. Epub 2018 Nov 26.
6
Binding of the general anesthetic sevoflurane to ion channels.
PLoS Comput Biol. 2018 Nov 26;14(11):e1006605. doi: 10.1371/journal.pcbi.1006605. eCollection 2018 Nov.
7
A Streamlined, General Approach for Computing Ligand Binding Free Energies and Its Application to GPCR-Bound Cholesterol.
J Chem Theory Comput. 2018 Dec 11;14(12):6560-6573. doi: 10.1021/acs.jctc.8b00447. Epub 2018 Nov 13.
8
Fat nucleosome: Role of lipids on chromatin.
Prog Lipid Res. 2018 Apr;70:29-34. doi: 10.1016/j.plipres.2018.04.003. Epub 2018 Apr 17.
10
Large-scale detection of drug off-targets: hypotheses for drug repurposing and understanding side-effects.
BMC Pharmacol Toxicol. 2017 Apr 28;18(1):18. doi: 10.1186/s40360-017-0128-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验