Suppr超能文献

通过使用孟加拉国儿童家庭视频的机器学习模型检测发育迟缓与自闭症:开发与验证研究

Detecting Developmental Delay and Autism Through Machine Learning Models Using Home Videos of Bangladeshi Children: Development and Validation Study.

作者信息

Tariq Qandeel, Fleming Scott Lanyon, Schwartz Jessey Nicole, Dunlap Kaitlyn, Corbin Conor, Washington Peter, Kalantarian Haik, Khan Naila Z, Darmstadt Gary L, Wall Dennis Paul

机构信息

Division of Systems Medicine, Department of Pediatrics, Stanford University, Palo Alto, CA, United States.

Department of Biomedical Data Science, Stanford University, Palo Alto, CA, United States.

出版信息

J Med Internet Res. 2019 Apr 24;21(4):e13822. doi: 10.2196/13822.

Abstract

BACKGROUND

Autism spectrum disorder (ASD) is currently diagnosed using qualitative methods that measure between 20-100 behaviors, can span multiple appointments with trained clinicians, and take several hours to complete. In our previous work, we demonstrated the efficacy of machine learning classifiers to accelerate the process by collecting home videos of US-based children, identifying a reduced subset of behavioral features that are scored by untrained raters using a machine learning classifier to determine children's "risk scores" for autism. We achieved an accuracy of 92% (95% CI 88%-97%) on US videos using a classifier built on five features.

OBJECTIVE

Using videos of Bangladeshi children collected from Dhaka Shishu Children's Hospital, we aim to scale our pipeline to another culture and other developmental delays, including speech and language conditions.

METHODS

Although our previously published and validated pipeline and set of classifiers perform reasonably well on Bangladeshi videos (75% accuracy, 95% CI 71%-78%), this work improves on that accuracy through the development and application of a powerful new technique for adaptive aggregation of crowdsourced labels. We enhance both the utility and performance of our model by building two classification layers: The first layer distinguishes between typical and atypical behavior, and the second layer distinguishes between ASD and non-ASD. In each of the layers, we use a unique rater weighting scheme to aggregate classification scores from different raters based on their expertise. We also determine Shapley values for the most important features in the classifier to understand how the classifiers' process aligns with clinical intuition.

RESULTS

Using these techniques, we achieved an accuracy (area under the curve [AUC]) of 76% (SD 3%) and sensitivity of 76% (SD 4%) for identifying atypical children from among developmentally delayed children, and an accuracy (AUC) of 85% (SD 5%) and sensitivity of 76% (SD 6%) for identifying children with ASD from those predicted to have other developmental delays.

CONCLUSIONS

These results show promise for using a mobile video-based and machine learning-directed approach for early and remote detection of autism in Bangladeshi children. This strategy could provide important resources for developmental health in developing countries with few clinical resources for diagnosis, helping children get access to care at an early age. Future research aimed at extending the application of this approach to identify a range of other conditions and determine the population-level burden of developmental disabilities and impairments will be of high value.

摘要

背景

目前,自闭症谱系障碍(ASD)的诊断采用定性方法,该方法需评估20至100种行为,可能需要与训练有素的临床医生进行多次预约,且需数小时才能完成。在我们之前的工作中,我们证明了机器学习分类器的有效性,通过收集美国儿童的家庭视频,识别出由未经训练的评估者使用机器学习分类器评分的行为特征的简化子集,以确定儿童患自闭症的“风险评分”。我们使用基于五个特征构建的分类器,在美国视频上实现了92%(95%置信区间88%-97%)的准确率。

目的

利用从达卡儿童专科医院收集的孟加拉国儿童视频,我们旨在将我们的流程扩展到另一种文化和其他发育迟缓情况,包括言语和语言状况。

方法

尽管我们之前发表并经过验证的流程和分类器集在孟加拉国视频上表现相当不错(准确率75%,95%置信区间71%-78%),但这项工作通过开发和应用一种强大的众包标签自适应聚合新技术提高了准确率。我们通过构建两个分类层来提高模型的实用性和性能:第一层区分典型行为和非典型行为,第二层区分ASD和非ASD。在每一层中,我们使用独特的评估者加权方案,根据不同评估者的专业知识聚合分类分数。我们还确定了分类器中最重要特征的沙普利值,以了解分类器的过程如何与临床直觉一致。

结果

使用这些技术,我们从发育迟缓儿童中识别非典型儿童的准确率(曲线下面积[AUC])为76%(标准差3%),灵敏度为76%(标准差4%);从预测有其他发育迟缓的儿童中识别ASD儿童的准确率(AUC)为85%(标准差5%),灵敏度为76%(标准差6%)。

结论

这些结果表明,使用基于移动视频和机器学习指导的方法对孟加拉国儿童进行自闭症早期远程检测具有前景。这种策略可为临床诊断资源稀缺的发展中国家的发育健康提供重要资源,帮助儿童在幼年时获得护理。旨在扩展该方法的应用以识别一系列其他病症并确定发育障碍和损伤的人群水平负担的未来研究将具有很高的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5f3f/6505375/5ae34fc310e5/jmir_v21i4e13822_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验