Department of Bioengineering and Department of Neuroscience at University of Pennsylvania , Philadelphia, Pennsylvania.
J Neurophysiol. 2019 Jun 1;121(6):2267-2275. doi: 10.1152/jn.00035.2018. Epub 2019 Apr 24.
If the brain abstractly represents probability distributions as knowledge, then the modality of a decision, e.g., movement vs. perception, should not matter. If, on the other hand, learned representations are policies, they may be specific to the task where learning takes place. Here, we test this by asking whether a learned spatial prior generalizes from a sensorimotor estimation task to a two-alternative-forced choice (2-Afc) perceptual comparison task. A model and simulation-based analysis revealed that while participants learn prior distribution in the sensorimotor estimation task, measured priors are consistently broader than sensorimotor priors in the 2-Afc task. That the prior does not fully generalize suggests that sensorimotor priors are more like policies than knowledge. In disagreement with standard Bayesian thought, the modality of the decision has a strong influence on the implied prior distributions. We do not know whether the brain represents abstract and generalizable knowledge or task-specific policies that map internal states to actions. We find that learning in a sensorimotor task does not generalize strongly to a perceptual task, suggesting that humans learned policies and did not truly acquire knowledge. Priors differ across tasks, thus casting doubt on the central tenet of many Bayesian models, that the brain's representation of the world is built on generalizable knowledge.
如果大脑将概率分布抽象地表示为知识,那么决策的模态(例如运动与感知)就不应重要。另一方面,如果习得的表示是策略,那么它们可能特定于学习发生的任务。在这里,我们通过询问习得的空间先验是否从感觉运动估计任务泛化到二选一强制选择(2-Afc)感知比较任务来检验这一点。基于模型和模拟的分析表明,虽然参与者在感觉运动估计任务中学习了先验分布,但在 2-Afc 任务中测量的先验分布始终比感觉运动先验分布更广泛。先验不能完全泛化表明,感觉运动先验更像是策略而不是知识。与标准贝叶斯思维不一致的是,决策的模态对隐含的先验分布有很强的影响。我们不知道大脑是代表抽象和可泛化的知识还是将内部状态映射到动作的特定于任务的策略。我们发现,在感觉运动任务中的学习不能很好地泛化到感知任务,这表明人类学习了策略,而没有真正获得知识。不同任务之间的先验存在差异,因此对许多贝叶斯模型的核心原则提出了质疑,即大脑对世界的表示是基于可泛化的知识。