Suppr超能文献

用于快速贝叶斯时间估计的先验信息泛化

Generalization of prior information for rapid Bayesian time estimation.

作者信息

Roach Neil W, McGraw Paul V, Whitaker David J, Heron James

机构信息

Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham NG7 2RD, United Kingdom;

Visual Neuroscience Group, School of Psychology, The University of Nottingham, Nottingham NG7 2RD, United Kingdom.

出版信息

Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):412-417. doi: 10.1073/pnas.1610706114. Epub 2016 Dec 22.

Abstract

To enable effective interaction with the environment, the brain combines noisy sensory information with expectations based on prior experience. There is ample evidence showing that humans can learn statistical regularities in sensory input and exploit this knowledge to improve perceptual decisions and actions. However, fundamental questions remain regarding how priors are learned and how they generalize to different sensory and behavioral contexts. In principle, maintaining a large set of highly specific priors may be inefficient and restrict the speed at which expectations can be formed and updated in response to changes in the environment. However, priors formed by generalizing across varying contexts may not be accurate. Here, we exploit rapidly induced contextual biases in duration reproduction to reveal how these competing demands are resolved during the early stages of prior acquisition. We show that observers initially form a single prior by generalizing across duration distributions coupled with distinct sensory signals. In contrast, they form multiple priors if distributions are coupled with distinct motor outputs. Together, our findings suggest that rapid prior acquisition is facilitated by generalization across experiences of different sensory inputs but organized according to how that sensory information is acted on.

摘要

为了实现与环境的有效交互,大脑会将有噪声的感官信息与基于先前经验的预期相结合。有充分证据表明,人类能够学习感官输入中的统计规律,并利用这些知识来改善感知决策和行动。然而,关于先验知识是如何习得的,以及它们如何推广到不同的感官和行为情境中,仍然存在一些基本问题。原则上,维持大量高度特定的先验知识可能效率低下,并限制了根据环境变化形成和更新预期的速度。然而,通过在不同情境中进行泛化而形成的先验知识可能并不准确。在这里,我们利用持续时间再现中快速诱导的情境偏差,来揭示在先前知识获取的早期阶段,这些相互竞争的需求是如何得到解决的。我们表明,观察者最初通过对与不同感官信号相结合的持续时间分布进行泛化,形成单一的先验知识。相比之下,如果分布与不同的运动输出相结合,他们会形成多个先验知识。总之,我们的研究结果表明,通过对不同感官输入的经验进行泛化,有助于快速获取先验知识,但会根据感官信息的作用方式进行组织。

相似文献

1
Generalization of prior information for rapid Bayesian time estimation.用于快速贝叶斯时间估计的先验信息泛化
Proc Natl Acad Sci U S A. 2017 Jan 10;114(2):412-417. doi: 10.1073/pnas.1610706114. Epub 2016 Dec 22.
4
Bayesian integration in sensorimotor learning.感觉运动学习中的贝叶斯整合
Nature. 2004 Jan 15;427(6971):244-7. doi: 10.1038/nature02169.
5
The generalization of prior uncertainty during reaching.伸手过程中先验不确定性的泛化。
J Neurosci. 2014 Aug 20;34(34):11470-84. doi: 10.1523/JNEUROSCI.3882-13.2014.
8
A Switching Observer for Human Perceptual Estimation.人类感知估计的切换观测器。
Neuron. 2018 Jan 17;97(2):462-474.e6. doi: 10.1016/j.neuron.2017.12.011. Epub 2017 Dec 28.
9
Probabilistic mechanisms in sensorimotor control.感觉运动控制中的概率机制。
Novartis Found Symp. 2006;270:191-8; discussion 198-202, 232-7.

引用本文的文献

7
Rapid calibration to dynamic temporal contexts.快速校准动态时间上下文。
Q J Exp Psychol (Hove). 2024 Sep;77(9):1923-1935. doi: 10.1177/17470218231219507. Epub 2023 Dec 30.
8
Context-specific and context-invariant computations of interval timing.间隔计时的情境特定与情境不变计算
Front Neurosci. 2023 Sep 20;17:1249502. doi: 10.3389/fnins.2023.1249502. eCollection 2023.
9
Motor variability modulates calibration of precisely timed movements.运动变异性调节精确计时运动的校准。
iScience. 2023 Jun 25;26(7):107204. doi: 10.1016/j.isci.2023.107204. eCollection 2023 Jul 21.

本文引用的文献

1
Fast and Accurate Learning When Making Discrete Numerical Estimates.进行离散数值估计时的快速准确学习。
PLoS Comput Biol. 2016 Apr 12;12(4):e1004859. doi: 10.1371/journal.pcbi.1004859. eCollection 2016 Apr.
3
A Bayesian perspective on magnitude estimation.贝叶斯视角下的量级估计。
Trends Cogn Sci. 2015 May;19(5):285-93. doi: 10.1016/j.tics.2015.03.002. Epub 2015 Apr 2.
5
On the origins of suboptimality in human probabilistic inference.人类概率推理中的次优起源。
PLoS Comput Biol. 2014 Jun 19;10(6):e1003661. doi: 10.1371/journal.pcbi.1003661. eCollection 2014 Jun.
6
Learning what to expect (in visual perception).了解预期情况(在视觉感知方面)。
Front Hum Neurosci. 2013 Oct 24;7:668. doi: 10.3389/fnhum.2013.00668.
7
Neural basis of the perception and estimation of time.时间感知和估计的神经基础。
Annu Rev Neurosci. 2013 Jul 8;36:313-36. doi: 10.1146/annurev-neuro-062012-170349. Epub 2013 May 29.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验