Psychology Department and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA.
Nat Neurosci. 2019 Oct;22(10):1544-1553. doi: 10.1038/s41593-019-0470-8. Epub 2019 Sep 24.
Arguably, the most difficult part of learning is deciding what to learn about. Should I associate the positive outcome of safely completing a street-crossing with the situation 'the car approaching the crosswalk was red' or with 'the approaching car was slowing down'? In this Perspective, we summarize our recent research into the computational and neural underpinnings of 'representation learning'-how humans (and other animals) construct task representations that allow efficient learning and decision-making. We first discuss the problem of learning what to ignore when confronted with too much information, so that experience can properly generalize across situations. We then turn to the problem of augmenting perceptual information with inferred latent causes that embody unobservable task-relevant information, such as contextual knowledge. Finally, we discuss recent findings regarding the neural substrates of task representations that suggest the orbitofrontal cortex represents 'task states', deploying them for decision-making and learning elsewhere in the brain.
可以说,学习中最困难的部分是决定要学习什么。我应该将安全完成过马路的积极结果与“正在接近的汽车是红色的”的情况联系起来,还是与“正在接近的汽车正在减速”的情况联系起来?在这篇观点文章中,我们总结了我们最近对“表示学习”的计算和神经基础的研究——人类(和其他动物)如何构建任务表示,以便能够有效地进行学习和决策。我们首先讨论了在面对过多信息时学习忽略什么的问题,以便经验能够在不同情况下正确推广。然后,我们转向用体现不可观察的任务相关信息(例如上下文知识)的推断潜在原因来增强感知信息的问题。最后,我们讨论了关于任务表示的神经基质的最新发现,这些发现表明眶额皮层代表“任务状态”,并将其用于大脑其他部位的决策和学习。