Suppr超能文献

学习任务状态表示。

Learning task-state representations.

机构信息

Psychology Department and Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA.

出版信息

Nat Neurosci. 2019 Oct;22(10):1544-1553. doi: 10.1038/s41593-019-0470-8. Epub 2019 Sep 24.

Abstract

Arguably, the most difficult part of learning is deciding what to learn about. Should I associate the positive outcome of safely completing a street-crossing with the situation 'the car approaching the crosswalk was red' or with 'the approaching car was slowing down'? In this Perspective, we summarize our recent research into the computational and neural underpinnings of 'representation learning'-how humans (and other animals) construct task representations that allow efficient learning and decision-making. We first discuss the problem of learning what to ignore when confronted with too much information, so that experience can properly generalize across situations. We then turn to the problem of augmenting perceptual information with inferred latent causes that embody unobservable task-relevant information, such as contextual knowledge. Finally, we discuss recent findings regarding the neural substrates of task representations that suggest the orbitofrontal cortex represents 'task states', deploying them for decision-making and learning elsewhere in the brain.

摘要

可以说,学习中最困难的部分是决定要学习什么。我应该将安全完成过马路的积极结果与“正在接近的汽车是红色的”的情况联系起来,还是与“正在接近的汽车正在减速”的情况联系起来?在这篇观点文章中,我们总结了我们最近对“表示学习”的计算和神经基础的研究——人类(和其他动物)如何构建任务表示,以便能够有效地进行学习和决策。我们首先讨论了在面对过多信息时学习忽略什么的问题,以便经验能够在不同情况下正确推广。然后,我们转向用体现不可观察的任务相关信息(例如上下文知识)的推断潜在原因来增强感知信息的问题。最后,我们讨论了关于任务表示的神经基质的最新发现,这些发现表明眶额皮层代表“任务状态”,并将其用于大脑其他部位的决策和学习。

相似文献

1
Learning task-state representations.
Nat Neurosci. 2019 Oct;22(10):1544-1553. doi: 10.1038/s41593-019-0470-8. Epub 2019 Sep 24.
2
A Probability Distribution over Latent Causes, in the Orbitofrontal Cortex.
J Neurosci. 2016 Jul 27;36(30):7817-28. doi: 10.1523/JNEUROSCI.0659-16.2016.
3
Human Orbitofrontal Cortex Represents a Cognitive Map of State Space.
Neuron. 2016 Sep 21;91(6):1402-1412. doi: 10.1016/j.neuron.2016.08.019.
4
Evolving schema representations in orbitofrontal ensembles during learning.
Nature. 2021 Feb;590(7847):606-611. doi: 10.1038/s41586-020-03061-2. Epub 2020 Dec 23.
5
Generalizing to generalize: Humans flexibly switch between compositional and conjunctive structures during reinforcement learning.
PLoS Comput Biol. 2020 Apr 13;16(4):e1007720. doi: 10.1371/journal.pcbi.1007720. eCollection 2020 Apr.
6
Orbitofrontal cortex as a cognitive map of task space.
Neuron. 2014 Jan 22;81(2):267-279. doi: 10.1016/j.neuron.2013.11.005.
7
Reward-dependent learning in neuronal networks for planning and decision making.
Prog Brain Res. 2000;126:217-29. doi: 10.1016/S0079-6123(00)26016-0.
8
The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.
J Neurosci. 2018 May 23;38(21):5008-5021. doi: 10.1523/JNEUROSCI.2901-17.2018. Epub 2018 Apr 30.
9
Policies or knowledge: priors differ between a perceptual and sensorimotor task.
J Neurophysiol. 2019 Jun 1;121(6):2267-2275. doi: 10.1152/jn.00035.2018. Epub 2019 Apr 24.
10
[Neural mechanisms of decision making].
Brain Nerve. 2008 Sep;60(9):1017-27.

引用本文的文献

1
Brain-wide representations of prior information in mouse decision-making.
Nature. 2025 Sep;645(8079):192-200. doi: 10.1038/s41586-025-09226-1. Epub 2025 Sep 3.
2
Goals and the Structure of Experience.
ArXiv. 2025 Aug 20:arXiv:2508.15013v1.
3
Predictive encoding of auditory sequences in the human prefrontal cortex.
bioRxiv. 2025 Aug 22:2025.08.22.671264. doi: 10.1101/2025.08.22.671264.
8
Abstract rule learning promotes cognitive flexibility in complex environments across species.
Nat Commun. 2025 Jun 25;16(1):5396. doi: 10.1038/s41467-025-60943-7.
9
Computational markers show specific deficits for dyslexia and ADHD in complex learning settings.
NPJ Sci Learn. 2025 Jun 13;10(1):38. doi: 10.1038/s41539-025-00323-4.
10
Habenula contributions to negative self-cognitions.
Nat Commun. 2025 May 7;16(1):4231. doi: 10.1038/s41467-025-59611-7.

本文引用的文献

1
Uncovering the 'state': Tracing the hidden state representations that structure learning and decision-making.
Behav Processes. 2019 Oct;167:103891. doi: 10.1016/j.beproc.2019.103891. Epub 2019 Aug 2.
2
Sequential replay of nonspatial task states in the human hippocampus.
Science. 2019 Jun 28;364(6447). doi: 10.1126/science.aaw5181.
3
Hippocampal Contributions to Model-Based Planning and Spatial Memory.
Neuron. 2019 May 8;102(3):683-693.e4. doi: 10.1016/j.neuron.2019.02.014. Epub 2019 Mar 11.
5
An Integrated Model of Action Selection: Distinct Modes of Cortical Control of Striatal Decision Making.
Annu Rev Psychol. 2019 Jan 4;70:53-76. doi: 10.1146/annurev-psych-010418-102824. Epub 2018 Sep 27.
6
Dissociable effects of surprising rewards on learning and memory.
J Exp Psychol Learn Mem Cogn. 2018 Sep;44(9):1430-1443. doi: 10.1037/xlm0000518. Epub 2018 Mar 19.
7
Model-based predictions for dopamine.
Curr Opin Neurobiol. 2018 Apr;49:1-7. doi: 10.1016/j.conb.2017.10.006. Epub 2017 Oct 31.
8
Mastering the game of Go without human knowledge.
Nature. 2017 Oct 18;550(7676):354-359. doi: 10.1038/nature24270.
9
Dorsal hippocampus contributes to model-based planning.
Nat Neurosci. 2017 Sep;20(9):1269-1276. doi: 10.1038/nn.4613. Epub 2017 Jul 31.
10
Effects of inference on dopaminergic prediction errors depend on orbitofrontal processing.
Behav Neurosci. 2017 Apr;131(2):127-134. doi: 10.1037/bne0000192.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验