Suppr超能文献

探索反应方式对连续量表评估的影响:来自一种新型建模方法的见解。

Exploring the Influence of Response Styles on Continuous Scale Assessments: Insights From a Novel Modeling Approach.

作者信息

Huang Hung-Yu

机构信息

University of Taipei, Taipei, Taiwan.

出版信息

Educ Psychol Meas. 2025 Feb;85(1):178-214. doi: 10.1177/00131644241242789. Epub 2024 Apr 17.

Abstract

The use of discrete categorical formats to assess psychological traits has a long-standing tradition that is deeply embedded in item response theory models. The increasing prevalence and endorsement of computer- or web-based testing has led to greater focus on continuous response formats, which offer numerous advantages in both respondent experience and methodological considerations. Response styles, which are frequently observed in self-reported data, reflect a propensity to answer questionnaire items in a consistent manner, regardless of the item content. These response styles have been identified as causes of skewed scale scores and biased trait inferences. In this study, we investigate the impact of response styles on individuals' responses within a continuous scale context, with a specific emphasis on extreme response style (ERS) and acquiescence response style (ARS). Building upon the established continuous response model (CRM), we propose extensions known as the CRM-ERS and CRM-ARS. These extensions are employed to quantitatively capture individual variations in these distinct response styles. The effectiveness of the proposed models was evaluated through a series of simulation studies. Bayesian methods were employed to effectively calibrate the model parameters. The results demonstrate that both models achieve satisfactory parameter recovery. Neglecting the effects of response styles led to biased estimation, underscoring the importance of accounting for these effects. Moreover, the estimation accuracy improved with increasing test length and sample size. An empirical analysis is presented to elucidate the practical applications and implications of the proposed models.

摘要

使用离散分类格式来评估心理特质有着悠久的传统,这深深植根于项目反应理论模型之中。基于计算机或网络测试的日益普及和认可,使得人们更加关注连续反应格式,这种格式在受访者体验和方法考量方面都具有诸多优势。反应风格在自我报告数据中经常出现,它反映了一种无论项目内容如何都以一致方式回答问卷项目的倾向。这些反应风格已被确定为量表分数偏斜和特质推断偏差的原因。在本研究中,我们在连续量表背景下研究反应风格对个体反应的影响,特别强调极端反应风格(ERS)和默许反应风格(ARS)。在已建立的连续反应模型(CRM)的基础上,我们提出了称为CRM - ERS和CRM - ARS的扩展模型。这些扩展模型用于定量捕捉这些不同反应风格中的个体差异。通过一系列模拟研究对所提出模型的有效性进行了评估。采用贝叶斯方法有效地校准模型参数。结果表明,两个模型都实现了令人满意的参数恢复。忽略反应风格的影响会导致估计偏差,这凸显了考虑这些影响的重要性。此外,估计精度随着测试长度和样本量的增加而提高。还进行了实证分析以阐明所提出模型的实际应用和意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1613/11726519/df180e4fe121/10.1177_00131644241242789-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验