Pouliot George, Rao Venkatesh, McCarty Jessica L, Soja Amber
a Computational Exposure Division, National Exposure Research Laboratory , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA.
b Office of Air Quality Planning and Standards, Office of Air and Radiation , U.S. Environmental Protection Agency, Research Triangle Park , NC , USA.
J Air Waste Manag Assoc. 2017 May;67(5):613-622. doi: 10.1080/10962247.2016.1268982. Epub 2016 Dec 14.
Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. One component of the biomass burning inventory, crop residue burning, has been poorly characterized in the National Emissions Inventory (NEI). In the 2011 NEI, wildland fires, prescribed fires, and crop residue burning collectively were the largest source of PM. This paper summarizes our 2014 NEI method to estimate crop residue burning emissions and grass/pasture burning emissions using remote sensing data and field information and literature-based, crop-specific emission factors. We focus on both the postharvest and pre-harvest burning that takes place with bluegrass, corn, cotton, rice, soybeans, sugarcane and wheat. Estimates for 2014 indicate that over the continental United States (CONUS), crop residue burning excluding all areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay occurred over approximately 1.5 million acres of land and produced 19,600 short tons of PM. For areas identified as Pasture/Grass, Grassland Herbaceous, and Pasture/Hay, biomass burning emissions occurred over approximately 1.6 million acres of land and produced 30,000 short tons of PM. This estimate compares with the 2011 NEI and 2008 NEI as follows: 2008: 49,650 short tons and 2011: 141,180 short tons. Note that in the previous two NEIs rangeland burning was not well defined and so the comparison is not exact. The remote sensing data also provided verification of our existing diurnal profile for crop residue burning emissions used in chemical transport modeling. In addition, the entire database used to estimate this sector of emissions is available on EPA's Clearinghouse for Inventories and Emission Factors (CHIEF, http://www3.epa.gov/ttn/chief/index.html ).
Estimates of crop residue burning and rangeland burning emissions can be improved by using satellite detections. Local information is helpful in distinguishing crop residue and rangeland burning from all other types of fires.
生物质燃烧因其对臭氧和颗粒物的影响,已被确定为空气质量下降的一个重要因素。生物质燃烧清单的一个组成部分,即作物秸秆燃烧,在美国国家排放清单(NEI)中的特征描述很差。在2011年的NEI中,野火、规定火烧和作物秸秆燃烧共同构成了颗粒物的最大来源。本文总结了我们在2014年NEI中使用遥感数据、实地信息以及基于文献的特定作物排放因子来估算作物秸秆燃烧排放和草地/牧场燃烧排放的方法。我们关注早熟禾、玉米、棉花、水稻、大豆、甘蔗和小麦在收获后和收获前的燃烧情况。2014年的估算表明,在美国大陆(CONUS),不包括所有被认定为牧场/草地、草本草地和干草牧场的区域,作物秸秆燃烧发生在约150万英亩的土地上,产生了19,600短吨的颗粒物。对于被认定为牧场/草地、草本草地和干草牧场的区域,生物质燃烧排放发生在约160万英亩的土地上,产生了30,000短吨的颗粒物。该估算与2011年NEI和2008年NEI的对比如下:2008年:49,650短吨,2011年:141,180短吨。请注意,在前两份NEI中,牧场燃烧的定义并不明确,因此这种比较并不精确。遥感数据还验证了我们现有的用于化学传输模型的作物秸秆燃烧排放日变化曲线。此外,用于估算该排放部门的整个数据库可在EPA的清单和排放因子信息中心(CHIEF,http://www3.epa.gov/ttn/chief/index.html )获取。
利用卫星探测可以改进作物秸秆燃烧和牧场燃烧排放的估算。当地信息有助于将作物秸秆燃烧和牧场燃烧与所有其他类型的火灾区分开来。