Department of Pathology and Laboratory Medicine University of California Davis Medical Center Sacramento California.
Department of Pharmacology University of California Davis Davis California.
Ann Clin Transl Neurol. 2019 Mar 18;6(4):723-738. doi: 10.1002/acn3.754. eCollection 2019 Apr.
Microglia play a pivotal role in the initiation and progression of Alzheimer's disease (AD). We here tested the therapeutic hypothesis that the Ca-activated potassium channel KCa3.1 constitutes a potential target for treating AD by reducing neuroinflammation.
To determine if KCa3.1 is relevant to AD, we tested if treating cultured microglia or hippocampal slices with A oligomer (AO) activated KCa3.1 in microglia, and if microglial KCa3.1 was upregulated in 5xFAD mice and in human AD brains. The expression/activity of KCa3.1 was examined by qPCR, Western blotting, immunohistochemistry, and whole-cell patch-clamp. To investigate the role of KCa3.1 in AD pathology, we resynthesized senicapoc, a clinically tested KCa3.1 blocker, and determined its pharmacokinetic properties and its effect on microglial activation, A deposition and hippocampal long-term potentiation (hLTP) in 5xFAD mice.
We found markedly enhanced microglial KCa3.1 expression/activity in brains of both 5xFAD mice and AD patients. In hippocampal slices, microglial KCa3.1 expression/activity was increased by AO treatment, and its inhibition diminished the proinflammatory and hLTP-impairing activities of AO. Senicapoc exhibited excellent brain penetrance and oral availability, and in 5xFAD mice, reduced neuroinflammation, decreased cerebral amyloid load, and enhanced hippocampal neuronal plasticity.
Our results prompt us to propose repurposing senicapoc for AD clinical trials, as senicapoc has excellent pharmacological properties and was safe and well-tolerated in a prior phase-3 clinical trial for sickle cell anemia. Such repurposing has the potential to expedite the urgently needed new drug discovery for AD.
小胶质细胞在阿尔茨海默病(AD)的发病和进展中起着关键作用。我们在这里测试了一种治疗假设,即钙激活钾通道 KCa3.1 通过减少神经炎症,构成了治疗 AD 的潜在靶点。
为了确定 KCa3.1 是否与 AD 相关,我们测试了用 A 寡聚体(AO)处理培养的小胶质细胞或海马切片是否激活了小胶质细胞中的 KCa3.1,以及 5xFAD 小鼠和人类 AD 大脑中是否上调了小胶质细胞 KCa3.1。通过 qPCR、Western blot、免疫组织化学和全细胞膜片钳技术检测 KCa3.1 的表达/活性。为了研究 KCa3.1 在 AD 病理学中的作用,我们重新合成了临床测试过的 KCa3.1 阻断剂 senicapoc,并确定了它的药代动力学特性及其对 5xFAD 小鼠小胶质细胞激活、A 沉积和海马长时程增强(hLTP)的影响。
我们发现,5xFAD 小鼠和 AD 患者的大脑中,小胶质细胞 KCa3.1 的表达/活性明显增强。在海马切片中,AO 处理增加了小胶质细胞 KCa3.1 的表达/活性,其抑制作用减弱了 AO 的促炎和损害 hLTP 的活性。Senicapoc 具有良好的脑穿透性和口服生物利用度,在 5xFAD 小鼠中,它降低了神经炎症、减少了脑淀粉样蛋白负荷,并增强了海马神经元的可塑性。
我们的结果促使我们提出将 senicapoc 重新用于 AD 的临床试验,因为 senicapoc 具有良好的药理学特性,并且在先前用于镰状细胞贫血的 3 期临床试验中是安全且耐受良好的。这种重新利用有可能加速急需的 AD 新药发现。