2nd Department of Pediatrics, Semmelweis University, Budapest, Hungary.
MTA TTK Lendület Cancer Biomarker Research Group, Institute of Enzymology, Hungarian Academy of Sciences, Budapest, Hungary.
Int J Cancer. 2019 Dec 1;145(11):3140-3151. doi: 10.1002/ijc.32369. Epub 2019 May 7.
Systemic therapy of breast cancer can include chemotherapy, hormonal therapy and targeted therapy. Prognostic biomarkers are able to predict survival and predictive biomarkers are able to predict therapy response. In this report, we describe the initial release of the first available online tool able to identify gene expression-based predictive biomarkers using transcriptomic data of a large set of breast cancer patients. Published gene expression data of 36 publicly available datasets were integrated with treatment data into a unified database. Response to therapy was determined using either author-reported pathological complete response data (n = 1,775) or relapse-free survival status at 5 years (n = 1,329). Treatment data includes chemotherapy (n = 2,108), endocrine therapy (n = 971) and anti-human epidermal growth factor receptor 2 (HER2) therapy (n = 267). The transcriptomic database includes 20,089 unique genes and 54,675 probe sets. Gene expression and therapy response are compared using receiver operating characteristics and Mann-Whitney tests. We demonstrate the utility of the pipeline by cross-validating 23 paclitaxel resistance-associated genes in different molecular subtypes of breast cancer. An additional set of established biomarkers including TP53 for chemotherapy in Luminal breast cancer (p = 1.01E-19, AUC = 0.769), HER2 for trastuzumab therapy (p = 8.4E-04, AUC = 0.629) and PGR for hormonal therapy (p = 8.6E-05, AUC = 0.7), are also endorsed. The tool is designed to validate and rank new predictive biomarker candidates in real time. By analyzing the selected genes in a large set of independent patients, one can select the most robust candidates and quickly eliminate those that are most likely to fail in a clinical setting. The analysis tool is accessible at www.rocplot.org.
乳腺癌的系统治疗包括化疗、激素治疗和靶向治疗。预后生物标志物能够预测生存,预测生物标志物能够预测治疗反应。在本报告中,我们描述了第一个可用的在线工具的初步发布,该工具能够使用大量乳腺癌患者的转录组数据识别基于基因表达的预测生物标志物。将 36 个公开可用数据集的已发表基因表达数据与治疗数据整合到一个统一的数据库中。使用作者报告的病理完全缓解数据(n=1775)或 5 年无复发生存状态(n=1329)来确定治疗反应。治疗数据包括化疗(n=2108)、内分泌治疗(n=971)和抗人表皮生长因子受体 2(HER2)治疗(n=267)。转录组数据库包括 20089 个独特基因和 54675 个探针集。使用接收器工作特征和曼-惠特尼检验比较基因表达和治疗反应。我们通过在不同的乳腺癌分子亚型中交叉验证 23 个紫杉醇耐药相关基因来证明该管道的实用性。还支持一组包括用于 Luminal 乳腺癌化疗的 TP53(p=1.01E-19,AUC=0.769)、用于曲妥珠单抗治疗的 HER2(p=8.4E-04,AUC=0.629)和用于激素治疗的 PGR(p=8.6E-05,AUC=0.7)在内的已建立的生物标志物。该工具旨在实时验证和排名新的预测生物标志物候选物。通过在大量独立患者中分析选定的基因,可以选择最稳健的候选物,并快速淘汰那些在临床环境中最有可能失败的候选物。分析工具可在 www.rocplot.org 上获得。