Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland.
Angew Chem Int Ed Engl. 2019 Oct 14;58(42):14810-14822. doi: 10.1002/anie.201901443. Epub 2019 Aug 8.
Molecular spectroscopy provides unique information on the internal structure of biological materials by detecting the characteristic vibrational signatures of their constituent chemical bonds at infrared frequencies. Nanophotonic antennas and metasurfaces have driven this concept towards few-molecule sensitivity by confining incident light into intense hot spots of the electromagnetic fields, providing strongly enhanced light-matter interaction. In this Minireview, recently developed molecular biosensing approaches based on the combination of dielectric metasurfaces and imaging detection are highlighted in comparison to traditional plasmonic geometries, and the unique potential of artificial intelligence techniques for nanophotonic sensor design and data analysis is emphasized. Because of their spectrometer-less operation principle, such imaging-based approaches hold great promise for miniaturized biosensors in practical point-of-care or field-deployable applications.
分子光谱学通过检测生物材料中组成化学键在红外频率下的特征振动特征,提供了有关生物材料内部结构的独特信息。纳米光子学天线和超材料通过将入射光限制在电磁场的强热点中,将这一概念推向了仅检测少数几个分子的灵敏度,从而提供了强烈增强的光物质相互作用。在这篇综述中,与传统的等离子体几何形状相比,强调了最近基于介电超材料和成像检测相结合的分子生物传感方法,并强调了人工智能技术在纳米光子学传感器设计和数据分析方面的独特潜力。由于它们无光谱仪的操作原理,这种基于成像的方法在实际的即时护理或现场可部署应用中为小型化生物传感器提供了巨大的前景。