Aalizadeh Majid, Azmoudeh Afshar Morteza, Fan Xudong
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States.
Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, United States.
ACS Omega. 2025 May 15;10(20):20713-20722. doi: 10.1021/acsomega.5c01700. eCollection 2025 May 27.
A novel framework is proposed that combines multiresonance biosensors with machine learning (ML) to significantly enhance the accuracy of parameter prediction in biosensing. Unlike traditional single-resonance systems, which are limited to one-dimensional data sets, this approach leverages multidimensional data generated by a custom-designed nanostructurea periodic array of silicon nanorods with a triangular cross section over an aluminum reflector. High bulk sensitivity values are achieved for this multiresonant structure, with certain resonant peaks reaching up to 1706 nm/RIU. The field analysis reveals Mie resonances as the physical reason behind the peaks. The predictive power of multiple resonant peaks from transverse magnetic and transverse electric polarizations is evaluated using Ridge Regression modeling. Systematic analysis reveals that incorporating multiple resonances yields up to 3 orders of magnitude improvement in refractive index detection precision compared to single-peak analyses. This precision enhancement is achieved without modifications to the biosensor hardware, highlighting the potential of data-centric strategies in biosensing. The findings establish a new paradigm in biosensing, demonstrating that the synergy between multiresonance data acquisition and ML-based analysis can significantly enhance detection accuracy. This study provides a scalable pathway for advancing high-precision biosensing technologies.
提出了一种将多共振生物传感器与机器学习(ML)相结合的新颖框架,以显著提高生物传感中参数预测的准确性。与限于一维数据集的传统单共振系统不同,该方法利用由定制设计的纳米结构(一种在铝反射器上具有三角形横截面的硅纳米棒周期性阵列)生成的多维数据。这种多共振结构实现了高体积灵敏度值,某些共振峰高达1706 nm/RIU。场分析揭示了米氏共振是这些峰背后的物理原因。使用岭回归模型评估了来自横向磁极化和横向电极化的多个共振峰的预测能力。系统分析表明,与单峰分析相比,纳入多个共振可使折射率检测精度提高多达3个数量级。这种精度提高是在不修改生物传感器硬件的情况下实现的,突出了以数据为中心的策略在生物传感中的潜力。这些发现建立了生物传感的新范式,表明多共振数据采集与基于ML的分析之间的协同作用可以显著提高检测准确性。本研究为推进高精度生物传感技术提供了一条可扩展的途径。