Ruiz-Zepeda Francisco, Gatalo Matija, Pavlišič Andraž, Dražić Goran, Jovanovič Primož, Bele Marjan, Gaberšček Miran, Hodnik Nejc
Department of Materials Chemistry , National Institute of Chemistry , Hajdrihova 19 , SI-1000 Ljubljana , Slovenia.
Department of Physics and Chemistry of Materials , Institute of Metals and Technology , Lepi pot 11 , SI-1000 Ljubljana , Slovenia.
Nano Lett. 2019 Aug 14;19(8):4919-4927. doi: 10.1021/acs.nanolett.9b00918. Epub 2019 May 2.
Catalytic properties of advanced functional materials are determined by their surface and near-surface atomic structure, composition, morphology, defects, compressive and tensile stresses, etc; also known as a structure-activity relationship. The catalysts structural properties are dynamically changing as they perform via complex phenomenon dependent on the reaction conditions. In turn, not just the structural features but even more importantly, catalytic characteristics of nanoparticles get altered. Definitive conclusions about these phenomena are not possible with imaging of random nanoparticles with unknown atomic structure history. Using a contemporary PtCu-alloy electrocatalyst as a model system, a unique approach allowing unprecedented insight into the morphological dynamics on the atomic-scale caused by the process of dealloying is presented. Observing the detailed structure and morphology of the same nanoparticle at different stages of electrochemical treatment reveals new insights into atomic-scale processes such as size, faceting, strain and porosity development. Furthermore, based on precise atomically resolved microscopy data, Kinetic Monte Carlo (KMC) simulations provide further feedback into the physical parameters governing electrochemically induced structural dynamics. This work introduces a unique approach toward observation and understanding of nanoparticles dynamic changes on the atomic level and paves the way for an understanding of the structure-stability relationship.
先进功能材料的催化性能由其表面和近表面原子结构、组成、形态、缺陷、压缩和拉伸应力等决定;这也被称为结构-活性关系。催化剂的结构性质在其通过依赖于反应条件的复杂现象发挥作用时会动态变化。反过来,不仅结构特征,更重要的是,纳米颗粒的催化特性也会改变。对于具有未知原子结构历史的随机纳米颗粒进行成像,无法得出关于这些现象的确切结论。以当代铂铜合金电催化剂作为模型系统,提出了一种独特的方法,能够以前所未有的视角洞察脱合金化过程在原子尺度上引起的形态动力学。观察同一纳米颗粒在电化学处理不同阶段的详细结构和形态,揭示了诸如尺寸、刻面、应变和孔隙率发展等原子尺度过程的新见解。此外,基于精确的原子分辨显微镜数据,动力学蒙特卡罗(KMC)模拟为控制电化学诱导结构动力学的物理参数提供了进一步的反馈。这项工作引入了一种独特的方法来观察和理解纳米颗粒在原子水平上的动态变化,并为理解结构-稳定性关系铺平了道路。